首页> 外文期刊>IEEE Transactions on Image Processing >Visual Typo Correction by Collocative Optimization: A Case Study on Merchandize Images
【24h】

Visual Typo Correction by Collocative Optimization: A Case Study on Merchandize Images

机译:协同优化的视觉错字校正:以商品图像为例

获取原文
获取原文并翻译 | 示例

摘要

Near-duplicate retrieval (NDR) in merchandize images is of great importance to a lot of online applications on e-Commerce websites. In those applications where the requirement of response time is critical, however, the conventional techniques developed for a general purpose NDR are limited, because expensive post-processing like spatial verification or hashing is usually employed to compromise the quantization errors among the visual words used for the images. In this paper, we argue that most of the errors are introduced because of the quantization process where the visual words are considered individually, which has ignored the contextual relations among words. We propose a “spelling or phrase correction” like process for NDR, which extends the concept of collocations to visual domain for modeling the contextual relations. Binary quadratic programming is used to enforce the contextual consistency of words selected for an image, so that the errors (typos) are eliminated and the quality of the quantization process is improved. The experimental results show that the proposed method can improve the efficiency of NDR by reducing vocabulary size by 1000% times, and under the scenario of merchandize image NDR, the expensive local interest point feature used in conventional approaches can be replaced by color-moment feature, which reduces the time cost by 9202% while maintaining comparable performance to the state-of-the-art methods.
机译:商品图像中的近重复检索(NDR)对于电子商务网站上的许多在线应用程序非常重要。但是,在要求响应时间非常关键的那些应用中,为通用NDR开发的常规技术受到了限制,因为通常采用昂贵的后处理(如空间验证或散列)来损害用于视觉的单词之间的量化误差。图片。在本文中,我们认为引入大多数错误是因为量化过程中视觉单词被单独考虑,而忽略了单词之间的上下文关系。我们为NDR提出了一种类似“拼写或短语校正”的过程,该过程将并置的概念扩展到了可视域中,以对上下文关系进行建模。使用二进制二次编程来增强为图像选择的单词的上下文一致性,从而消除了错误(打字错误)并提高了量化过程的质量。实验结果表明,该方法可以将词汇量减少1000%,从而提高NDR的效率,并且在商品图像NDR商品化的情况下,可以将传统方法中昂贵的局部兴趣点特征替换为色彩矩特征。 ,从而节省了9202%的时间成本,同时保持了与最新方法相当的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号