首页> 外文期刊>Image Processing, IEEE Transactions on >Tree Leaves Extraction in Natural Images: Comparative Study of Preprocessing Tools and Segmentation Methods
【24h】

Tree Leaves Extraction in Natural Images: Comparative Study of Preprocessing Tools and Segmentation Methods

机译:自然图像中的树叶提取:预处理工具和分割方法的比较研究

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we propose a comparative study of various segmentation methods applied to the extraction of tree leaves from natural images. This study follows the design of a mobile application, developed by Cerutti (published in ReVeS Participation—Tree Species Classification Using Random Forests and Botanical Features. CLEF 2012), to highlight the impact of the choices made for segmentation aspects. All the tests are based on a database of 232 images of tree leaves depicted on natural background from smartphones acquisitions. We also propose to study the improvements, in terms of performance, using preprocessing tools, such as the interaction between the user and the application through an input stroke, as well as the use of color distance maps. The results presented in this paper shows that the method developed by Cerutti (denoted Guided Active Contour), obtains the best score for almost all observation criteria. Finally, we detail our online benchmark composed of 14 unsupervised methods and 6 supervised ones.
机译:在本文中,我们提出了一种适用于从自然图像中提取树叶的各种分割方法的比较研究。这项研究遵循了Cerutti开发的移动应用程序的设计(发表在《 ReVeS参与-使用随机森林和植物特征进行树种分类》,CLEF 2012中),以突出显示针对分割方面做出的选择的影响。所有测试均基于从智能手机获取的自然背景上描绘的232张树叶的图像数据库。我们还建议使用预处理工具来研究性能方面的改进,例如通过输入笔划在用户与应用程序之间的交互以及色距图的使用。本文介绍的结果表明,由Cerutti开发的方法(称为“引导式主动轮廓”)在几乎所有观察标准下均获得了最佳分数。最后,我们详细介绍了由14种无监督方法和6种有监督方法组成的在线基准测试。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号