首页> 外文期刊>Image Processing, IEEE Transactions on >Edge-Preserving Image Denoising via Group Coordinate Descent on the GPU
【24h】

Edge-Preserving Image Denoising via Group Coordinate Descent on the GPU

机译:通过GPU上的组坐标下降来保留边缘的图像去噪

获取原文
获取原文并翻译 | 示例

摘要

Image denoising is a fundamental operation in image processing, and its applications range from the direct (photographic enhancement) to the technical (as a subproblem in image reconstruction algorithms). In many applications, the number of pixels has continued to grow, while the serial execution speed of computational hardware has begun to stall. New image processing algorithms must exploit the power offered by massively parallel architectures like graphics processing units (GPUs). This paper describes a family of image denoising algorithms well-suited to the GPU. The algorithms iteratively perform a set of independent, parallel 1D pixel-update subproblems. To match GPU memory limitations, they perform these pixel updates in-place and only store the noisy data, denoised image, and problem parameters. The algorithms can handle a wide range of edge-preserving roughness penalties, including differentiable convex penalties and anisotropic total variation. Both algorithms use the majorize-minimize framework to solve the 1D pixel update subproblem. Results from a large 2D image denoising problem and a 3D medical imaging denoising problem demonstrate that the proposed algorithms converge rapidly in terms of both iteration and run-time.
机译:图像去噪是图像处理中的基本操作,其应用范围从直接(照相增强)到技术(作为图像重建算法中的一个子问题)。在许多应用中,像素数量持续增长,而计算硬件的串行执行速度已开始停滞。新的图像处理算法必须利用图形处理单元(GPU)等大规模并行体系结构提供的功能。本文介绍了非常适合GPU的一系列图像降噪算法。该算法反复执行一组独立的,并行的1D像素更新子问题。为了满足GPU内存的限制,它们就地执行这些像素更新,并且仅存储噪声数据,去噪图像和问题参数。该算法可处理范围广泛的边缘保留粗糙度惩罚,包括可微凸惩罚和各向异性总变化。两种算法都使用majorize-minimize框架来解决一维像素更新子问题。来自大型2D图像降噪问题和3D医学成像降噪问题的结果表明,所提出的算法在迭代和运行时方面都迅速收敛。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号