首页> 外文期刊>IEEE Transactions on Image Processing >Learning-Based Shadow Recognition and Removal From Monochromatic Natural Images
【24h】

Learning-Based Shadow Recognition and Removal From Monochromatic Natural Images

机译:单色自然图像中基于学习的阴影识别与去除

获取原文
获取原文并翻译 | 示例

摘要

This paper addresses the problem of recognizing and removing shadows from monochromatic natural images from a learning-based perspective. Without chromatic information, shadow recognition and removal are extremely challenging in this paper, mainly due to the missing of invariant color cues. Natural scenes make this problem even harder due to the complex illumination condition and ambiguity from many near-black objects. In this paper, a learning-based shadow recognition and removal scheme is proposed to tackle the challenges above-mentioned. First, we propose to use both shadow-variant and invariant cues from illumination, texture, and odd order derivative characteristics to recognize shadows. Such features are used to train a classifier via boosting a decision tree and integrated into a conditional random field, which can enforce local consistency over pixel labels. Second, a Gaussian model is introduced to remove the recognized shadows from monochromatic natural scenes. The proposed scheme is evaluated using both qualitative and quantitative results based on a novel database of hand-labeled shadows, with comparisons to the existing state-of-the-art schemes. We show that the shadowed areas of a monochromatic image can be accurately identified using the proposed scheme, and high-quality shadow-free images can be precisely recovered after shadow removal.
机译:本文从基于学习的角度解决了从单色自然图像中识别和消除阴影的问题。没有色度信息,阴影识别和去除在本文中极具挑战性,主要是由于缺少不变的颜色提示。由于复杂的照明条件和许多近乎黑色的物体的模糊性,自然场景使这个问题更加棘手。在本文中,提出了一种基于学习的阴影识别和去除方案,以解决上述挑战。首先,我们建议使用来自照明,纹理和奇数阶导数特性的阴影变化和不变提示来识别阴影。这些功能用于通过增强决策树来训练分类器,并集成到条件随机字段中,从而可以在像素标签上实现局部一致性。其次,引入了高斯模型以从单色自然场景中去除识别出的阴影。基于新的手工标记阴影数据库,使用定性和定量结果对提议的方案进行了评估,并与现有的最新方案进行了比较。我们表明,使用提出的方案可以准确地识别单色图像的阴影区域,并且在去除阴影后可以精确地恢复高质量的无阴影图像。

著录项

  • 来源
    《IEEE Transactions on Image Processing》 |2017年第12期|5811-5824|共14页
  • 作者单位

    Center for Interdisciplinary Information Science Research, Zhengzhou University, Zhengzhou, China;

    School of Electrical Engineering and Computer Science, University of Central Florida, Orlando, FL, USA;

    Center for Interdisciplinary Information Science Research, Zhengzhou University, Zhengzhou, China;

    Center for Interdisciplinary Information Science Research, Zhengzhou University, Zhengzhou, China;

    School of Electrical Engineering and Computer Science, University of Central Florida, Orlando, FL, USA;

    Fujian Key Laboratory of Sensing and Computing for Smart City, School of Information Science and Engineering, Xiamen University, Xiamen, China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Histograms; Image segmentation; Lighting; Databases; Image recognition; Entropy; Image color analysis;

    机译:直方图;图像分割;照明;数据库;图像识别;熵;图像色彩分析;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号