首页> 外文期刊>IEEE Transactions on Image Processing >Study of Temporal Effects on Subjective Video Quality of Experience
【24h】

Study of Temporal Effects on Subjective Video Quality of Experience

机译:时间对主观视频体验质量的影响研究

获取原文
获取原文并翻译 | 示例

摘要

HTTP adaptive streaming is being increasingly deployed by network content providers, such as Netflix and YouTube. By dividing video content into data chunks encoded at different bitrates, a client is able to request the appropriate bitrate for the segment to be played next based on the estimated network conditions. However, this can introduce a number of impairments, including compression artifacts and rebuffering events, which can severely impact an end-user’s quality of experience (QoE). We have recently created a new video quality database, which simulates a typical video streaming application, using long video sequences and interesting Netflix content. Going beyond previous efforts, the new database contains highly diverse and contemporary content, and it includes the subjective opinions of a sizable number of human subjects regarding the effects on QoE of both rebuffering and compression distortions. We observed that rebuffering is always obvious and unpleasant to subjects, while bitrate changes may be less obvious due to content-related dependencies. Transient bitrate drops were preferable over rebuffering only on low complexity video content, while consistently low bitrates were poorly tolerated. We evaluated different objective video quality assessment algorithms on our database and found that objective video quality models are unreliable for QoE prediction on videos suffering from both rebuffering events and bitrate changes. This implies the need for more general QoE models that take into account objective quality models, rebuffering-aware information, and memory. The publicly available video content as well as metadata for all of the videos in the new database can be found at http://live.ece.utexas.edu/research/LIVE_NFLXStudyflx_index.html.
机译:网络内容提供商(例如Netflix和YouTube)越来越多地部署HTTP自适应流。通过将视频内容划分为以不同比特率编码的数据块,客户端可以根据估计的网络条件为下一个要播放的片段请求合适的比特率。但是,这可能会带来很多损害,包括压缩伪影和重新缓冲事件,这些都会严重影响最终用户的体验质量(QoE)。我们最近创建了一个新的视频质量数据库,该数据库使用长视频序列和有趣的Netflix内容来模拟典型的视频流应用程序。除了以前的努力之外,新数据库还包含了高度多样化和现代的内容,并且包含了相当数量的人类受试者关于重新缓冲和压缩失真对QoE的影响的主观意见。我们观察到,重新缓冲总是很明显且对主题不愉快,而由于与内容相关的依赖性,比特率的变化可能不太明显。瞬态比特率下降优于仅对低复杂度视频内容进行重新缓冲,而对低比特率的容忍度却一直较低。我们在数据库中评估了不同的客观视频质量评估算法,发现客观视频质量模型对于遭受重新缓冲事件和比特率变化的视频的QoE预测是不可靠的。这意味着需要更通用的QoE模型,其中要考虑客观质量模型,可重新缓冲的信息和内存。可以在http://live.ece.utexas.edu/research/LIVE_NFLXStudyflx_index.html上找到可公开获得的视频内容以及新数据库中所有视频的元数据。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号