首页> 外文期刊>IEEE Transactions on Image Processing >Study of Subjective Quality and Objective Blind Quality Prediction of Stereoscopic Videos
【24h】

Study of Subjective Quality and Objective Blind Quality Prediction of Stereoscopic Videos

机译:立体视频主观质量与客观盲质量预测研究

获取原文
获取原文并翻译 | 示例

摘要

We present a new subjective and objective study on full high-definition (HD) stereoscopic (3D or S3D) video quality. In the subjective study, we constructed an S3D video dataset with 12 pristine and 288 test videos, and the test videos are generated by applying the H.264 and H.265 compression, blur, and frame freeze artifacts. We also propose a no reference (NR) objective video quality assessment (QA) algorithm that relies on measurements of the statistical dependencies between the motion and disparity subband coefficients of S3D videos. Inspired by the Generalized Gaussian Distribution (GGD) approach, we model the joint statistical dependencies between the motion and disparity components as following a Bivariate Generalized Gaussian Distribution (BGGD). We estimate the BGGD model parameters (alpha, beta) and the coherence measure (Psi) from the eigenvalues of the sample covariance matrix (M) of the BCGD. In turn, we model the BGGD parameters of pristine S3D videos using a Multivariate Gaussian (MVG) distribution. The likelihood of a test video's MVG model parameters coming from the pristine MVG model is computed and shown to play a key role in the overall quality estimation. We also estimate the global motion content of each video by averaging the SSIM scores between pairs of successive video frames. To estimate the test S3D video's spatial quality, we apply the popular 2D NR unsupervised NIQE image QA model on a frame-by-frame basis on both views. The overall quality of a test S3D video is finally computed by pooling the test S3D video's likelihood estimates, global motion strength, and spatial quality scores. The proposed algorithm, which is completely blind (requiring no reference videos or training on subjective scores) is called the Motion and Disparity-based 3D video quality evaluator (MoDi(3D)). We show that MoDi(3D) delivers competitive performance over a wide variety of datasets, including the IRCCYN dataset, the WaterlooIVC Phase I dataset, the LFOVIA dataset, and our proposed LFOVIAS3DPh2 S3D video dataset.
机译:我们提出了关于全高清(HD)立体(3D或S3D)视频质量的新的主观和客观研究。在主观研究中,我们使用12个原始视频和288个测试视频构建了S3D视频数据集,并且通过应用H.264和H.265压缩,模糊和帧冻结伪像生成了测试视频。我们还提出了一种无参考(NR)客观视频质量评估(QA)算法,该算法依赖于S3D视频的运动和视差子带系数之间的统计依赖性测量。受广义高斯分布(GGD)方法的启发,我们按照双变量广义高斯分布(BGGD)对运动和视差分量之间的联合统计依存关系进行建模。我们从BCGD样本协方差矩阵(M)的特征值估计BGGD模型参数(α,β)和相干性度量(Psi)。反过来,我们使用多元高斯(MVG)分布对原始S3D视频的BGGD参数进行建模。计算出来自原始MVG模型的测试视频的MVG模型参数的可能性,并显示出在总体质量估算中起关键作用。我们还通过平均成对的连续视频帧之间的SSIM得分来估算每个视频的全局运动内容。为了评估测试S3D视频的空间质量,我们在两种视图的逐帧基础上应用了流行的2D NR无监督NIQE图像质量检查模型。最后,通过合并测试S3D视频的似然估计,整体运动强度和空间质量得分,可以计算出测试S3D视频的总体质量。所提出的完全盲法(不需要参考视频或主观分数的训练)的算法称为基于运动和视差的3D视频质量评估器(MoDi(3D))。我们显示MoDi(3D)在各种数据集(包括IRCCYN数据集,WaterlooIVC第一阶段数据集,LFOVIA数据集和我们提出的LFOVIAS3DPh2 S3D视频数据集)上均具有竞争优势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号