首页> 外文期刊>Image Processing, IEEE Transactions on >Learning Discriminative Binary Codes for Large-scale Cross-modal Retrieval
【24h】

Learning Discriminative Binary Codes for Large-scale Cross-modal Retrieval

机译:学习判别式二进制代码以进行大规模的跨模态检索

获取原文
获取原文并翻译 | 示例

摘要

Hashing based methods have attracted considerable attention for efficient cross-modal retrieval on large-scale multimedia data. The core problem of cross-modal hashing is how to learn compact binary codes that construct the underlying correlations between heterogeneous features from different modalities. A majority of recent approaches aim at learning hash functions to preserve the pairwise similarities defined by given class labels. However, these methods fail to explicitly explore the discriminative property of class labels during hash function learning. In addition, they usually discard the discrete constraints imposed on the to-be-learned binary codes, and compromise to solve a relaxed problem with quantization to obtain the approximate binary solution. Therefore, the binary codes generated by these methods are suboptimal and less discriminative to different classes. To overcome these drawbacks, we propose a novel cross-modal hashing method, termed discrete cross-modal hashing (DCH), which directly learns discriminative binary codes while retaining the discrete constraints. Specifically, DCH learns modality-specific hash functions for generating unified binary codes, and these binary codes are viewed as representative features for discriminative classification with class labels. An effective discrete optimization algorithm is developed for DCH to jointly learn the modality-specific hash function and the unified binary codes. Extensive experiments on three benchmark data sets highlight the superiority of DCH under various cross-modal scenarios and show its state-of-the-art performance.
机译:基于散列的方法在大规模多媒体数据上进行有效的跨模态检索已引起了广泛的关注。跨模式散列的核心问题是如何学习紧凑的二进制代码,这些二进制代码可构造来自不同模式的异构特征之间的潜在关联。最近的大多数方法旨在学习哈希函数,以保留由给定类标签定义的成对相似性。但是,这些方法无法在散列函数学习期间显式地探索类标签的判别属性。另外,它们通常丢弃施加在要学习的二进制代码上的离散约束,并折衷以解决量化的松弛问题以获得近似二进制解。因此,通过这些方法生成的二进制代码是次优的,并且对于不同类别的判别力较小。为了克服这些缺点,我们提出了一种新颖的交叉模态哈希方法,称为离散交叉模态哈希(DCH),它可以直接学习判别性二进制代码,同时保留离散约束。具体来说,DCH学习特定于形式的哈希函数以生成统一的二进制代码,并且这些二进制代码被视为具有类标签的判别性分类的代表功能。针对DCH开发了一种有效的离散优化算法,以联合学习特定于模式的哈希函数和统一的二进制代码。在三个基准数据集上进行的大量实验突出了DCH在各种交叉模式方案下的优越性,并展示了其最新的性能。

著录项

  • 来源
    《Image Processing, IEEE Transactions on》 |2017年第5期|2494-2507|共14页
  • 作者单位

    School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China;

    School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China;

    School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China;

    School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China;

    Center for OPTical IMagery Analysis and Learning, State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an, China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Binary codes; Correlation; Quantization (signal); Semantics; Multimedia communication; Optimization; Training data;

    机译:二进制码;相关性;量化(信号);语义;多媒体通信;优化;训练数据;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号