首页> 外文期刊>IEEE Transactions on Image Processing >Hierarchical Latent Concept Discovery for Video Event Detection
【24h】

Hierarchical Latent Concept Discovery for Video Event Detection

机译:用于视频事件检测的分层潜在概念发现

获取原文
获取原文并翻译 | 示例

摘要

Semantic information is important for video event detection. How to automatically discover, model, and utilize semantic information to facilitate video event detection has been a challenging problem. In this paper, we propose a novel hierarchical video event detection model, which deliberately unifies the processes of underlying semantics discovery and event modeling from video data. Specially, different from most of the approaches based on manually pre-defined concepts, we devise an effective model to automatically uncover video semantics by hierarchically capturing latent static-visual concepts in frame-level and latent activity concepts (i.e., temporal sequence relationships of static-visual concepts) in segment-level. The unified model not only enables a discriminative and descriptive representation for videos, but also alleviates error propagation problem from video representation to event modeling existing in previous methods. A max-margin framework is employed to learn the model. Extensive experiments on four challenging video event datasets, i.e., MED11, CCV, UQE50, and FCVID, have been conducted to demonstrate the effectiveness of the proposed method.
机译:语义信息对于视频事件检测很重要。如何自动发现,建模和利用语义信息来促进视频事件检测一直是一个具有挑战性的问题。在本文中,我们提出了一种新颖的分层视频事件检测模型,该模型故意统一了视频数据的基础语义发现和事件建模过程。特别地,与大多数基于手动预定义概念的方法不同,我们设计了一种有效的模型,通过分层捕获帧级和潜在活动概念中的潜在静态视觉概念(即静态的时间序列关系)来自动发现视频语义-视觉概念)。统一的模型不仅可以对视频进行区分和描述,而且还可以减轻以前方法中从视频表示到事件建模的错误传播问题。采用最大利润率框架来学习模型。已经对四个具有挑战性的视频事件数据集(即MED11,CCV,UQE50和FCVID)进行了广泛的实验,以证明该方法的有效性。

著录项

  • 来源
    《IEEE Transactions on Image Processing》 |2017年第5期|2149-2162|共14页
  • 作者单位

    School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, QLD, Australia;

    School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, QLD, Australia;

    School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China;

    School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, QLD, Australia;

    School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, QLD, Australia;

    School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Semantics; Event detection; Detectors; Hidden Markov models; Adaptation models; Feature extraction; Visualization;

    机译:语义;事件检测;检测器;隐马尔可夫模型;适应模型;特征提取;可视化;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号