首页> 外文期刊>Neurocomputing >Video anomaly detection based on a hierarchical activity discovery within spatio-temporal contexts
【24h】

Video anomaly detection based on a hierarchical activity discovery within spatio-temporal contexts

机译:基于时空上下文中的分层活动发现的视频异常检测

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we present a novel approach for video-anomaly detection in crowded and complicated scenes. The proposed approach detects anomalies based on a hierarchical activity-pattern discovery framework, comprehensively considering both global and local spatio-temporal contexts. The discovery is a coarse-to-fine learning process with unsupervised methods for automatically constructing normal activity patterns at different levels. A unified anomaly energy function is designed based on these discovered activity patterns to identify the abnormal level of an input motion pattern. We demonstrate the effectiveness of the proposed method on the UCSD anomaly-detection datasets and compare the performance with existing work.
机译:在本文中,我们提出了一种在拥挤和复杂场景中进行视频异常检测的新颖方法。所提出的方法基于分层活动模式发现框架检测异常,并全面考虑了全局和局部时空上下文。该发现是从无到有的学习过程,采用无监督的方法来自动构建不同级别的正常活动模式。基于这些发现的活动模式设计统一的异常能量函数,以识别输入运动模式的异常级别。我们在UCSD异常检测数据集上证明了该方法的有效性,并将其性能与现有工作进行了比较。

著录项

  • 来源
    《Neurocomputing》 |2014年第2期|144-152|共9页
  • 作者单位

    Guangdong Provincial Key Lab. of Robotics and Intelligent System, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, China,Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong, China,Center for Research on Robotics and Smart City, The Chinese University of Hong Kong & Smart China, Hong Kong, China;

    School of Control Science and Engineering, Shandong University, China;

    Guangdong Provincial Key Lab. of Robotics and Intelligent System, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen, P.R. China,Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong, China;

    Guangdong Provincial Key Lab. Of Robotics and Intelligent System, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, China;

    Guangdong Provincial Key Lab. Of Robotics and Intelligent System, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, China;

    Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong, China,Center for Research on Robotics and Smart City, The Chinese University of Hong Kong & Smart China, Hong Kong, China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Visual surveillance; Video anomaly detection; Hierarchical discovery; Energy function;

    机译:视觉监控;视频异常检测;分层发现;能量功能;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号