首页> 外文期刊>IEEE Transactions on Image Processing >Deep Aesthetic Quality Assessment With Semantic Information
【24h】

Deep Aesthetic Quality Assessment With Semantic Information

机译:具有语义信息的深度美学质量评估

获取原文
获取原文并翻译 | 示例

摘要

Human beings often assess the aesthetic quality of an image coupled with the identification of the image’s semantic content. This paper addresses the correlation issue between automatic aesthetic quality assessment and semantic recognition. We cast the assessment problem as the main task among a multi-task deep model, and argue that semantic recognition task offers the key to address this problem. Based on convolutional neural networks, we employ a single and simple multi-task framework to efficiently utilize the supervision of aesthetic and semantic labels. A correlation item between these two tasks is further introduced to the framework by incorporating the inter-task relationship learning. This item not only provides some useful insight about the correlation but also improves assessment accuracy of the aesthetic task. In particular, an effective strategy is developed to keep a balance between the two tasks, which facilitates to optimize the parameters of the framework. Extensive experiments on the challenging Aesthetic Visual Analysis dataset and Photo.net dataset validate the importance of semantic recognition in aesthetic quality assessment, and demonstrate that multitask deep models can discover an effective aesthetic representation to achieve the state-of-the-art results.
机译:人们通常会评估图像的美学质量以及图像语义内容的识别。本文探讨了自动美学质量评估与语义识别之间的相关性问题。我们将评估问题作为多任务深度模型中的主要任务,并认为语义识别任务是解决该问题的关键。基于卷积神经网络,我们采用一个简单的多任务框架来有效利用美学和语义标签的监督。通过合并任务间关系学习,将这两个任务之间的关联项进一步引入到框架中。该项目不仅提供了有关相关性的有用信息,而且还提高了美学任务的评估准确性。特别是,开发了一种有效的策略来在两个任务之间保持平衡,这有助于优化框架的参数。在具有挑战性的美学视觉分析数据集和Photo.net数据集上进行的大量实验证实了语义识别在美学质量评估中的重要性,并证明了多任务深度模型可以发现有效的美学表现形式,以实现最新的结果。

著录项

  • 来源
    《IEEE Transactions on Image Processing》 |2017年第3期|1482-1495|共14页
  • 作者

    Yueying Kao; Ran He; Kaiqi Huang;

  • 作者单位

    Chinese Academy of Sciences, Center for Research on Intelligent Perception and Computing and National Laboratory of Pattern Recognition of Institute of Automation, Beijing, China;

    Chinese Academy of Sciences, Center for Research on Intelligent Perception and Computing and National Laboratory of Pattern Recognition of Institute of Automation, Beijing, China;

    Chinese Academy of Sciences, Center for Research on Intelligent Perception and Computing and National Laboratory of Pattern Recognition of Institute of Automation, Beijing, China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Semantics; Quality assessment; Correlation; Neural networks; Visualization; Linear programming; Computational modeling;

    机译:语义;质量评估;相关性;神经网络;可视化;线性编程;计算模型;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号