首页> 外文期刊>IEEE Transactions on Image Processing >Tropical Cyclone Intensity Estimation Using a Deep Convolutional Neural Network
【24h】

Tropical Cyclone Intensity Estimation Using a Deep Convolutional Neural Network

机译:基于深度卷积神经网络的热带气旋强度估算

获取原文
获取原文并翻译 | 示例

摘要

Tropical cyclone intensity estimation is a challenging task as it required domain knowledge while extracting features, significant pre-processing, various sets of parameters obtained from satellites, and human intervention for analysis. The inconsistency of results, significant pre-processing of data, complexity of the problem domain, and problems on generalizability are some of the issues related to intensity estimation. In this study, we design a deep convolutional neural network architecture for categorizing hurricanes based on intensity using graphics processing unit. Our model has achieved better accuracy and lower root-mean-square error by just using satellite images than 'state-of-the-art' techniques. Visualizations of learned features at various layers and their deconvolutions are also presented for understanding the learning process.
机译:热带气旋强度估算是一项艰巨的任务,因为它需要领域知识,同时要提取特征,进行大量预处理,从卫星获得各种参数集以及进行分析的人为干预。结果的不一致,数据的大量预处理,问题域的复杂性以及可概括性方面的问题是与强度估计有关的一些问题。在这项研究中,我们设计了一种深度卷积神经网络体系结构,用于使用图形处理单元基于强度对飓风进行分类。与“最新技术”相比,仅使用卫星图像,我们的模型就可以实现更高的准确性和更低的均方根误差。为了理解学习过程,还提供了在各个层上学习的特征的可视化及其反卷积。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号