首页> 外文期刊>IEEE Transactions on Image Processing >Dense Attention Fluid Network for Salient Object Detection in Optical Remote Sensing Images
【24h】

Dense Attention Fluid Network for Salient Object Detection in Optical Remote Sensing Images

机译:光学遥感图像中突出物体检测的密集注意力网络

获取原文
获取原文并翻译 | 示例

摘要

Despite the remarkable advances in visual saliency analysis for natural scene images (NSIs), salient object detection (SOD) for optical remote sensing images (RSIs) still remains an open and challenging problem. In this paper, we propose an end-to-end Dense Attention Fluid Network (DAFNet) for SOD in optical RSIs. A Global Context-aware Attention (GCA) module is proposed to adaptively capture long-range semantic context relationships, and is further embedded in a Dense Attention Fluid (DAF) structure that enables shallow attention cues flow into deep layers to guide the generation of high-level feature attention maps. Specifically, the GCA module is composed of two key components, where the global feature aggregation module achieves mutual reinforcement of salient feature embeddings from any two spatial locations, and the cascaded pyramid attention module tackles the scale variation issue by building up a cascaded pyramid framework to progressively refine the attention map in a coarse-to-fine manner. In addition, we construct a new and challenging optical RSI dataset for SOD that contains 2,000 images with pixel-wise saliency annotations, which is currently the largest publicly available benchmark. Extensive experiments demonstrate that our proposed DAFNet significantly outperforms the existing state-of-the-art SOD competitors. https://github.com/rmcong/DAFNet_TIP20.
机译:尽管对自然场景图像(NSIS)的视觉显着性分析非常重要,但对于光学遥感图像(RSIS)的突出物体检测(SOD)仍然是一个开放和具有挑战性的问题。在本文中,我们提出了一种用于光学RSIS中的SOD端的端到端密集注意力流体网络(DAFENT)。建议全局背景感知注意力(GCA)模块以自适应地捕获远程语义上下文关系,并进一步嵌入密集的注意力(DAF)结构中,使浅注意线索流入深层以引导高电平的产生-level特征注意地图。具体地,GCA模块由两个关键组件组成,其中全局特征聚合模块从任何两个空间位置实现了突出的突出特征嵌入的互连,并且级联的金字塔注意模块通过构建级联金字塔框架来解决比例变化问题以粗为精细的方式逐渐改进注意力图。此外,我们为SOD构建了一个新的和挑战光学RSI数据集,其中包含具有像素明显诠释的2,000个图像,这是目前最大的公共可用基准。广泛的实验表明,我们提出的Dafetnet显着优于现有的最先进的SOD竞争者。 https://github.com/rmcong/dafnet_tip20。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号