首页> 外文期刊>IEEE Transactions on Geoscience and Remote Sensing >Nested Network With Two-Stream Pyramid for Salient Object Detection in Optical Remote Sensing Images
【24h】

Nested Network With Two-Stream Pyramid for Salient Object Detection in Optical Remote Sensing Images

机译:带有二流金字塔的嵌套网络,用于光学遥感图像中的显着目标检测

获取原文
获取原文并翻译 | 示例

摘要

based on the shape of network architecture, which detects salient objects from optical RSIs in a purely data-driven fashion. The proposed LV-Net consists of two key modules, i.e., a two-stream pyramid module (L-shaped module) and an encoderdecoder module with nested connections (V-shaped module). Specifically, the L-shaped module extracts a set of complementary information hierarchically by using a two-stream pyramid structure, which is beneficial to perceiving the diverse scales and local details of salient objects. The V-shaped module gradually integrates encoder detail features with decoder semantic features through nested connections, which aims at suppressing the cluttered backgrounds and highlighting the salient objects. In addition, we construct the first publicly available optical RSI data set for salient object detection, including 800 images with varying spatial resolutions, diverse saliency types, and pixel-wise ground truth. Experiments on this benchmark data set demonstrate that the proposed method outperforms the state-of-the-art salient object detection methods both qualitatively and quantitatively.
机译:基于网络体系结构的形状,它以纯粹的数据驱动方式从光学RSI检测显着物体。拟议的LV-Net由两个关键模块组成,即两个流金字塔模块(L形模块)和具有嵌套连接的编码器-解码器模块(V形模块)。具体地,L形模块通过使用两流金字塔结构分层地提取一组补充信息,这有利于感知显着物体的不同尺度和局部细节。 V形模块通过嵌套连接逐渐将编码器详细信息功能与解码器语义功能集成在一起,目的是抑制混乱的背景并突出显示突出的对象。此外,我们构建了第一个用于显着物体检测的公开光学RSI数据集,包括800张具有不同空间分辨率,不同显着性类型和逐像素地面实况的图像。在该基准数据集上进行的实验表明,该方法在质量和数量上均优于最新的显着目标检测方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号