首页> 外文期刊>IEEE Transactions on Image Processing >RR-DnCNN v2.0: Enhanced Restoration-Reconstruction Deep Neural Network for Down-Sampling-Based Video Coding
【24h】

RR-DnCNN v2.0: Enhanced Restoration-Reconstruction Deep Neural Network for Down-Sampling-Based Video Coding

机译:RR-DNCNN v2.0:增强基于抽样的视频编码的增强恢复 - 重建深度神经网络

获取原文
获取原文并翻译 | 示例

摘要

Integrating deep learning techniques into the video coding framework gains significant improvement compared to the standard compression techniques, especially applying super-resolution (up-sampling) to down-sampling based video coding as post-processing. However, besides up-sampling degradation, the various artifacts brought from compression make super-resolution problem more difficult to solve. The straightforward solution is to integrate the artifact removal techniques before super-resolution. However, some helpful features may be removed together, degrading the super-resolution performance. To address this problem, we proposed an end-to-end restoration-reconstruction deep neural network (RR-DnCNN) using the degradation-aware technique, which entirely solves degradation from compression and sub-sampling. Besides, we proved that the compression degradation produced by Random Access configuration is rich enough to cover other degradation types, such as Low Delay P and All Intra, for training. Since the straightforward network RR-DnCNN with many layers as a chain has poor learning capability suffering from the gradient vanishing problem, we redesign the network architecture to let reconstruction leverages the captured features from restoration using up-sampling skip connections. Our novel architecture is called restoration-reconstruction u-shaped deep neural network (RR-DnCNN v2.0). As a result, our RR-DnCNN v2.0 outperforms the previous works and can attain 17.02% BD-rate reduction on UHD resolution for all-intra anchored by the standard H.265/HEVC. The source code is available at https://minhmanho.github.io/rrdncnn/ .
机译:与标准压缩技术相比,将深度学习技术集成到视频编码框架中提出了显着的改进,特别是将超分辨率(上采样)应用于基于后处理的视频编码。然而,除了上取样的劣化之外,从压缩带来的各种伪影使超级分辨率的问题更难以解决。直接解决方案是在超级分辨率之前集成伪影去除技术。然而,可以一起去除一些有用的功能,降低超分辨率性能。为了解决这个问题,我们建议使用劣化感知技术提出了端到端恢复 - 重建深度神经网络(RR-DNCNN),其完全解决了压缩和子采样的劣化。此外,我们证明了随机接入配置产生的压缩降解足以覆盖其他降解类型,例如低延迟P和所有内部,用于训练。由于具有许多层作为链的直接网络RR-DNCNN具有较差的学习能力遭受梯度消失问题,因此我们重新设计了网络架构,让重建利用恢复捕获功能使用Up-采样跳过连接。我们的小说架构称为恢复 - 重建U形深度神经网络(RR-DNCNN v2.0)。因此,我们的RR-DNCNN v2.0优于上一个作品,可以在标准H.265 / HEVC锚定的全内部获得UHD分辨率的17.02%的BD速率降低。源代码可在 https ://minhmanho.github.io/rrdncnn/

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号