首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >Video Anomaly Detection with Sparse Coding Inspired Deep Neural Networks
【24h】

Video Anomaly Detection with Sparse Coding Inspired Deep Neural Networks

机译:视频异常检测与稀疏编码启发深度神经网络

获取原文
获取原文并翻译 | 示例

摘要

This paper presents an anomaly detection method that is based on a sparse coding inspired Deep Neural Networks (DNN). Specifically, in light of the success of sparse coding based anomaly detection, we propose a Temporally-coherent Sparse Coding (TSC), where a temporally-coherent term is used to preserve the similarity between two similar frames. The optimization of sparse coefficients in TSC with the Sequential Iterative Soft-Thresholding Algorithm (SIATA) is equivalent to a special stacked Recurrent Neural Networks (sRNN) architecture. Further, to reduce the computational cost in alternatively updating the dictionary and sparse coefficients in TSC optimization and to alleviate hyperparameters selection in TSC, we stack one more layer on top of the TSC-inspired sRNN to reconstruct the inputs, and arrive at an sRNN-AE. We further improve sRNN-AE in the following aspects: i) rather than using a predefined similarity measurement between two frames, we propose to learn a data-dependent similarity measurement between neighboring frames in sRNN-AE to make it more suitable for anomaly detection; ii) to reduce computational costs in the inference stage, we reduce the depth of the sRNN in sRNN-AE and, consequently, our framework achieves real-time anomaly detection; iii) to improve computational efficiency, we conduct temporal pooling over the appearance features of several consecutive frames for summarizing information temporally, then we feed appearance features and temporally summarized features into a separate sRNN-AE for more robust anomaly detection. To facilitate anomaly detection evaluation, we also build a large-scale anomaly detection dataset which is even larger than the summation of all existing datasets for anomaly detection in terms of both the volume of data and the diversity of scenes. Extensive experiments on both a toy dataset under controlled settings and real datasets demonstrate that our method significantly outperforms existing methods, which validates the effectiveness of our sRNN-AE method for anomaly detection. Codes and data have been released at https://github.com/StevenLiuWen/sRNN_TSC_Anomaly_Detection.
机译:本文提出了一种基于稀疏编码的异常检测方法,其深度神经网络(DNN)。具体地,鉴于基于稀疏编码的异常检测的成功,我们提出了一个时间相干的稀疏编码(TSC),其中使用时间相干术语来保护两个类似帧之间的相似性。具有顺序迭代软阈值算法(SIATA)的TSC中稀疏系数的优化相当于特殊的堆叠经常性神经网络(SRNN)架构。此外,为了减少计算成本,易于更新TSC优化中的字典和稀疏系数,并在TSC中缓解HyperParameters选择,我们在TSC启发的SRNN顶部堆叠一层以重建输入,并到达SRNN- AE。我们进一步改进了以下方面的SRNN-AE:i)而不是在两个帧之间使用预定义的相似性测量,我们建议学习SRNN-AE中相邻帧之间的数据相关的相似性测量,以使其更适合异常检测; ii)为了降低推理阶段的计算成本,我们减少了SRNN-AE中SRNN的深度,因此我们的框架实现了实时异常检测; III)为了提高计算效率,我们在几个连续帧的外观特征上进行时间汇集,以便在时间上汇总信息,然后我们将外观特征和时间汇总到单独的SRNN-AE中的特征,以进行更强大的异常检测。为了促进异常检测评估,我们还构建了一个大型异常检测数据集,其甚至大于所有现有数据集的总和在数据的数据量和场景的多样性方面进行异常检测。在受控设置和实时数据集下的玩具数据集的广泛实验表明,我们的方法显着优于现有的方法,这验证了我们对异常检测的SRNN-AE方法的有效性。在https://github.com/stevenliuwen/srnn_tsc_anomaly_detection释放了代码和数据。

著录项

  • 来源
  • 作者单位

    ShanghaiTech Univ Sch Informat Sci & Technol Shanghai 201210 Peoples R China|Chinese Acad Sci Shanghai Inst Microsyst & Informat Technol Shanghai 200050 Peoples R China|Univ Chinese Acad Sci Beijing 100049 Peoples R China;

    ShanghaiTech Univ Sch Informat Sci & Technol Shanghai 201210 Peoples R China|Chinese Acad Sci Shanghai Inst Microsyst & Informat Technol Shanghai 200050 Peoples R China|Univ Chinese Acad Sci Beijing 100049 Peoples R China;

    ShanghaiTech Univ Sch Informat Sci & Technol Shanghai 201210 Peoples R China|Chinese Acad Sci Shanghai Inst Microsyst & Informat Technol Shanghai 200050 Peoples R China|Univ Chinese Acad Sci Beijing 100049 Peoples R China;

    Nanjing Univ Sci & Engn Sch Comp Sci & Engn Nanjing 210023 Peoples R China;

    Univ Elect Sci & Technol China Chengdu 610054 Peoples R China;

    Sichuan Univ Coll Comp Sci Chengdu 610017 Peoples R China;

    ShanghaiTech Univ Sch Informat Sci & Technol Shanghai 201210 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Anomaly detection; Encoding; Feature extraction; Training; Optimization; Dictionaries; Deep learning; Sparse coding; anomaly detection; stacked recurrent neural networks;

    机译:异常检测;编码;特征提取;培训;优化;词典;深入学习;稀疏编码;异常检测;堆叠经常性神经网络;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号