首页> 外文期刊>IEEE Transactions on Image Processing >Bi-Directional Exponential Angular Triplet Loss for RGB-Infrared Person Re-Identification
【24h】

Bi-Directional Exponential Angular Triplet Loss for RGB-Infrared Person Re-Identification

机译:RGB红外人重新识别双向指数角度三重损耗

获取原文
获取原文并翻译 | 示例

摘要

RGB-Infrared person re-identification (RGB-IR Re-ID) is a cross-modality matching problem, where the modality discrepancy is a big challenge. Most existing works use Euclidean metric based constraints to resolve the discrepancy between features of images from different modalities. However, these methods are incapable of learning angularly discriminative feature embedding because Euclidean distance cannot measure the included angle between embedding vectors effectively. As an angularly discriminative feature space is important for classifying the human images based on their embedding vectors, in this paper, we propose a novel ranking loss function, named Bi-directional Exponential Angular Triplet Loss, to help learn an angularly separable common feature space by explicitly constraining the included angles between embedding vectors. Moreover, to help stabilize and learn the magnitudes of embedding vectors, we adopt a common space batch normalization layer. The quantitative and qualitative experiments on the SYSU-MM01 and RegDB dataset support our analysis. On SYSU-MM01 dataset, the performance is improved from 7.40% / 11.46% to 38.57% / 38.61% for rank-1 accuracy / mAP compared with the baseline. The proposed method can be generalized to the task of single-modality Re-ID and improves the rank-1 accuracy / mAP from 92.0% / 81.7% to 94.7% / 86.6% on the Market-1501 dataset, from 82.6% / 70.6% to 87.6% / 77.1% on the DukeMTMC-reID dataset.
机译:RGB-红外人重新识别(RGB-IR RE-ID)是一个跨模式匹配问题,其中模态差异是一个很大的挑战。大多数现有的作品使用基于欧几里德公制的基于约束来解决来自不同模式的图像的特征之间的差异。然而,这些方法无法学习角度辨别特征嵌入,因为欧几里德距离无法有效地嵌入矢量之间的夹角。作为角度辨别特征空间对于基于嵌入向量对人类图像进行分类,本文提出了一种新的排名损失函数,名为双向指数角度三重态损耗,以帮助学习角度可分离的共同特征空间明确限制嵌入向量之间的夹角。此外,为了帮助稳定和学习嵌入矢量的大小,我们采用公共空间批量归一化层。 SYSU-MM01和REGDB数据集的定量和定性实验支持我们的分析。在Sysu-MM01数据集上,与基线相比,该性能从7.40%/ 11.46%从7.40%/ 11.46%提高到38.57%/ 38.61%。该方法可以推广单片式重新ID的任务,并在市场-1501数据集中从92.0%/ 81.7%提高92.0%/ 81.7%的秩-1精度/地图,从82.6%/ 70.6%到94.7%/ 86.6% Dukemtmc-Reid数据集上的87.6%/ 77.1%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号