首页> 外文期刊>Neurocomputing >Triplet online instance matching loss for person re-identification
【24h】

Triplet online instance matching loss for person re-identification

机译:Triplet在线实例匹配人员重新识别

获取原文
获取原文并翻译 | 示例

摘要

Mining the shared features of the same identity in different scenes and the unique features of different identities in the same scene are the most significant challenges in the field of person re-identification (ReID). The Online Instance Matching (OIM) loss function and triplet loss function are the main methods for person ReID. Unfortunately, both of them have drawbacks. The OIM loss treats all samples equally and puts no emphasis on hard samples. The triplet loss processes batch construction in a complicated and fussy way and converges slowly. For these problems, we propose a Triplet Online Instance Matching (TOIM) loss function, which emphasizes hard samples and improves the person ReID accuracy effectively. It combines the advantages of the OIM loss and triplet loss and simplifies the batch construction process, which leads to quicker convergence. It can be trained on-line when handling the joint detection and identification task. To validate our loss function, we collect and annotate a large-scale benchmark dataset (UESTC-PR), which contains 499 identities and 60,437 images taken from surveillance cameras. We evaluated our proposed loss function on the Duke, Marker-1501 and UESTC-PR datasets using ResNet-50, and the results show that our proposed loss function outperforms the baseline methods, including Softmax loss, OIM loss and triplet loss.(c) 2020 Published by Elsevier B.V.
机译:在不同场景中挖掘相同身份的共享特征以及同一场景中不同身份的独特功能是人重新识别(Reid)领域中最重要的挑战。在线实例匹配(OIM)丢失功能和三重态丢失功能是人Reid的主要方法。不幸的是,他们两个都有缺点。 OIM损失同样对齐所有样品,并没有强调硬样品。三态损耗以复杂和挑剔的方式处理批量施工,并慢慢收敛。对于这些问题,我们提出了一个三联网在线实例匹配(TOIM)损失函数,它强调了硬样品并有效地提高了人的Reid精度。它结合了OIM损耗和三重态损耗的优点,并简化了批量施工过程,从而更快地收敛。处理联合检测和识别任务时可以在线培训。为了验证我们的损失函数,我们收集并注释一个大型基准数据集(uestc-Pr),其中包含499个身份和从监视摄像机拍摄的60,437张图像。我们在Duke,Marker-1501和Uestc-Pr数据集上评估了我们的建议损失功能,使用Reset-50,结果表明,我们的损失函数优于基线方法,包括Softmax丢失,OIM损耗和三重态损失。(c) 2020由Elsevier BV发布

著录项

  • 来源
    《Neurocomputing》 |2021年第14期|10-18|共9页
  • 作者单位

    Univ Elect Sci & Technol China Qingshuihe Campus 2006 Xiyuan Ave Chengdu 611731 Sichuan Peoples R China;

    Univ Elect Sci & Technol China Qingshuihe Campus 2006 Xiyuan Ave Chengdu 611731 Sichuan Peoples R China;

    Univ Elect Sci & Technol China Qingshuihe Campus 2006 Xiyuan Ave Chengdu 611731 Sichuan Peoples R China;

    Univ Elect Sci & Technol China Qingshuihe Campus 2006 Xiyuan Ave Chengdu 611731 Sichuan Peoples R China;

    Univ Elect Sci & Technol China Qingshuihe Campus 2006 Xiyuan Ave Chengdu 611731 Sichuan Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Person re-identification (ReID); Triplet online instance matching (TOIM); Triplet loss;

    机译:人重新识别(Reid);三联网在线实例匹配(Toim);三重态损失;
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号