首页> 外文期刊>IEEE Transactions on Image Processing >Deep Cascade Model-Based Face Recognition: When Deep-Layered Learning Meets Small Data
【24h】

Deep Cascade Model-Based Face Recognition: When Deep-Layered Learning Meets Small Data

机译:基于深度级联模型的人脸识别:当深层学习符合小数据时

获取原文
获取原文并翻译 | 示例

摘要

Sparse representation based classification (SRC), nuclear-norm matrix regression (NMR), and deep learning (DL) have achieved a great success in face recognition (FR). However, there still exist some intrinsic limitations among them. SRC and NMR based coding methods belong to one-step model, such that the latent discriminative information of the coding error vector cannot be fully exploited. DL, as a multi-step model, can learn powerful representation, but relies on large-scale data and computation resources for numerous parameters training with complicated back-propagation. Straightforward training of deep neural networks from scratch on small-scale data is almost infeasible. Therefore, in order to develop efficient algorithms that are specifically adapted for small-scale data, we propose to derive the deep models of SRC and NMR. Specifically, in this paper, we propose an end-to-end deep cascade model (DCM) based on SRC and NMR with hierarchical learning, nonlinear transformation and multi-layer structure for corrupted face recognition. The contributions include four aspects. First, an end-to-end deep cascade model for small-scale data without back-propagation is proposed. Second, a multi-level pyramid structure is integrated for local feature representation. Third, for introducing nonlinear transformation in layer-wise learning, softmax vector coding of the errors with class discrimination is proposed. Fourth, the existing representation methods can be easily integrated into our DCM framework. Experiments on a number of small-scale benchmark FR datasets demonstrate the superiority of the proposed model over state-of-the-art counterparts. Additionally, a perspective that deep-layered learning does not have to be convolutional neural network with back-propagation optimization is consolidated. The demo code is available in https://github.com/liuji93/DCM
机译:基于稀疏的基于分类(SRC),核规范矩阵回归(NMR)和深度学习(DL)在人脸识别(FR)中取得了巨大的成功。但是,它们之间仍然存在一些内在的限制。基于SRC和基于NMR的编码方法属于一步模型,使得编码错误矢量的潜在判别信息不能完全利用。 DL,作为一个多步模型,可以学习强大的表示,但依赖于具有复杂反向传播的许多参数训练的大规模数据和计算资源。对小型数据划痕的深神经网络的直接训练几乎是不可行的。因此,为了开发专门适用于小规模数据的高效算法,我们建议导出SRC和NMR的深层模型。具体地,在本文中,我们提出了一种基于SRC和NMR的端到端深级级级级模型(DCM),具有分层学习,非线性变换和用于损坏的人脸识别的多层结构。贡献包括四个方面。首先,提出了一种无需背部传播的小型数据的端到端深级级级联模型。其次,为本地特征表示集成了多级金字塔结构。第三,为了引入层面学习中的非线性变换,提出了具有类别辨别的误差的Softmax向量编码。第四,现有的表示方法可以轻松集成到我们的DCM框架中。关于许多小规模基准FR数据集的实验证明了拟议的型号上的优势。另外,透视深层学习不必具有反向传播优化的卷积神经网络的视角是合并的。 DEMO代码在https://github.com/liuji93/dcm中提供

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号