首页> 外文期刊>IEEE Transactions on Image Processing >An Underwater Image Enhancement Benchmark Dataset and Beyond
【24h】

An Underwater Image Enhancement Benchmark Dataset and Beyond

机译:水下图像增强基准数据集及超越

获取原文
获取原文并翻译 | 示例

摘要

Underwater image enhancement has been attracting much attention due to its significance in marine engineering and aquatic robotics. Numerous underwater image enhancement algorithms have been proposed in the last few years. However, these algorithms are mainly evaluated using either synthetic datasets or few selected real-world images. It is thus unclear how these algorithms would perform on images acquired in the wild and how we could gauge the progress in the field. To bridge this gap, we present the first comprehensive perceptual study and analysis of underwater image enhancement using large-scale real-world images. In this paper, we construct an Underwater Image Enhancement Benchmark (UIEB) including 950 real-world underwater images, 890 of which have the corresponding reference images. We treat the rest 60 underwater images which cannot obtain satisfactory reference images as challenging data. Using this dataset, we conduct a comprehensive study of the state-of-the-art underwater image enhancement algorithms qualitatively and quantitatively. In addition, we propose an underwater image enhancement network (called Water-Net) trained on this benchmark as a baseline, which indicates the generalization of the proposed UIEB for training Convolutional Neural Networks (CNNs). The benchmark evaluations and the proposed Water-Net demonstrate the performance and limitations of state-of-the-art algorithms, which shed light on future research in underwater image enhancement. The dataset and code are available at https://li-chongyi.github.io/proj_benchmark.html.
机译:由于其在海洋工程和水产机器人的意义,水下图像增强一直引起了很多关注。在过去几年中提出了许多水下图像增强算法。然而,这些算法主要使用合成数据集或少数选定的真实世界图像进行评估。因此,目前尚不清楚这些算法将如何在野外获取的图像上执行,以及我们如何衡量领域的进展。要弥补这一差距,我们展示了使用大规模现实世界图像的第一个全面的感知研究和分析水下图像增强。在本文中,我们构建了一种水下图像增强基准(UIEB),包括950个现实世界水下图像,其中890,其具有相应的参考图像。我们对它不能获得令人满意的参考图像作为具有挑战性的数据的剩余60水下图像。使用此数据集,我们对定性和定量进行了全面研究了最先进的水下图像增强算法。此外,我们提出了在该基准测试中培训的水下图像增强网络(称为水网)作为基线,这表示提出的UIEB对训练卷积神经网络(CNNS)的推广。基准评估和拟议的水网展示了最先进的算法的性能和局限,揭示了未来的水下图像增强研究。数据集和代码可在https://li-chongyi.github.io/proj_benchmark.html中获得。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号