首页> 外文期刊>IEEE Transactions on Image Processing >Personality-Assisted Multi-Task Learning for Generic and Personalized Image Aesthetics Assessment
【24h】

Personality-Assisted Multi-Task Learning for Generic and Personalized Image Aesthetics Assessment

机译:通用和个性化图像美学评估的个性辅助多任务学习

获取原文
获取原文并翻译 | 示例

摘要

Traditional image aesthetics assessment (IAA) approaches mainly predict the average aesthetic score of an image. However, people tend to have different tastes on image aesthetics, which is mainly determined by their subjective preferences. As an important subjective trait, personality is believed to be a key factor in modeling individual's subjective preference. In this paper, we present a personality-assisted multi-task deep learning framework for both generic and personalized image aesthetics assessment. The proposed framework comprises two stages. In the first stage, a multi-task learning network with shared weights is proposed to predict the aesthetics distribution of an image and Big-Five (BF) personality traits of people who like the image. The generic aesthetics score of the image can be generated based on the predicted aesthetics distribution. In order to capture the common representation of generic image aesthetics and people's personality traits, a Siamese network is trained using aesthetics data and personality data jointly. In the second stage, based on the predicted personality traits and generic aesthetics of an image, an inter-task fusion is introduced to generate individual's personalized aesthetic scores on the image. The performance of the proposed method is evaluated using two public image aesthetics databases. The experimental results demonstrate that the proposed method outperforms the state-of-the-arts in both generic and personalized IAA tasks.
机译:传统图像美学评估(IAA)方法主要预测图像的平均美学分数。然而,人们倾向于对图像美学进行不同的口味,主要由他们的主观偏好决定。作为一个重要的主观特征,人格被认为是建模个人主观偏好的关键因素。在本文中,我们为通用和个性化图像美学评估提供了一个人格辅助的多任务深度学习框架。所提出的框架包括两个阶段。在第一阶段,提出了一种具有共享权重的多任务学习网络,以预测类似图像的人的图像和大五(BF)个性特征的美学分布。可以基于预测的美学分布生成图像的通用美学分数。为了捕捉通用图像美学和人格特征的共同表示,暹罗网络正在使用美学数据和个性数据进行培训。在第二阶段,基于图像的预测个性特征和图像的通用美学,引入了任务间融合,以在图像上生成个人的个性化美学分数。使用两个公共图像美学数据库进行评估所提出的方法的性能。实验结果表明,所提出的方法在通用和个性化的IAA任务中表现出最先进的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号