首页> 外文期刊>IEEE Transactions on Image Processing >Category-Aware Spatial Constraint for Weakly Supervised Detection
【24h】

Category-Aware Spatial Constraint for Weakly Supervised Detection

机译:用于弱监督检测的类别感知空间约束

获取原文
获取原文并翻译 | 示例

摘要

Weakly supervised object detection has attracted increasing research attention recently. To this end, most existing schemes rely on scoring category-independent region proposals, which is formulated as a multiple instance learning problem. During this process, the proposal scores are aggregated and supervised by only image-level labels, which often fails to locate object boundaries precisely. In this paper, we break through such a restriction by taking a deeper look into the score aggregation stage and propose a Category-aware Spatial Constraint (CSC) scheme for proposals, which is integrated into weakly supervised object detection in an end-to-end learning manner. In particular, we incorporate the global shape information of objects as an unsupervised constraint, which is inferred from build-in foreground-and-background cues, termed Category-specific Pixel Gradient (CPG) maps. Specifically, each region proposal is weighted according to how well it covers the estimated shape of objects. For each category, a multi-center regularization is further introduced to penalize the violations between centers cluster and high-score proposals in a given image. Extensive experiments are done on the most widely-used benchmark Pascal VOC and COCO, which shows that our approach significantly improves weakly supervised object detection without adding new learnable parameters to the existing models nor changing the structures of CNNs.
机译:弱势监督的物体检测最近引起了越来越多的研究。为此,大多数现有计划依赖于评分类别无关的区域提案,该提案被标记为多实例学习问题。在此过程中,提案分数仅通过仅图像级标签进行聚合和监督,该标签通常无法精确定位对象边界。在本文中,我们通过更深入研究得分聚合阶段,提出了一个用于提案的类别感知的空间约束(CSC)方案,突破了这种限制,这是集成到端到端的弱监督的对象检测中学习方式。特别地,我们将对象的全局形状信息作为无监督的约束纳入了无监督的约束,这是从置于前景和背景线索的推断,称为特定的类别的像素梯度(CPG)映射。具体地,每个区域提议根据其覆盖物体的估计形状的方式加权。对于每个类别,进一步引入了多中心正则化以惩罚中心集群和给定图像中的高分提案之间的违规行为。广泛的实验是在最广泛使用的基准帕斯卡VOC和Coco上进行的,这表明我们的方法显着提高了弱监督的对象检测,而无需为现有模型添加新的学习参数,也不会改变CNN的结构。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号