首页> 外文期刊>IEEE Transactions on Image Processing >Combining Faster R-CNN and Model-Driven Clustering for Elongated Object Detection
【24h】

Combining Faster R-CNN and Model-Driven Clustering for Elongated Object Detection

机译:组合更快的R-CNN和模型驱动聚类,用于细长物体检测

获取原文
获取原文并翻译 | 示例

摘要

While analyzing the performance of state-of-the-art R-CNN based generic object detectors, we find that the detection performance for objects with low object-region-percentages (ORPs) of the bounding boxes are much lower than the overall average. Elongated objects are examples. To address the problem of low ORPs for elongated object detection, we propose a hybrid approach which employs a Faster R-CNN to achieve robust detections of object parts, and a novel model-driven clustering algorithm to group the related partial detections and suppress false detections. First, we train a Faster R-CNN with partial region proposals of suitable and stable ORPs. Next, we introduce a deep CNN (DCNN) for orientation classification on the partial detections. Then, on the outputs of the Faster R-CNN and DCNN, the algorithm of adaptive model-driven clustering first initializes a model of an elongated object with a data-driven process on local partial detections, and refines the model iteratively by model-driven clustering and data-driven model updating. By exploiting Faster R-CNN to produce robust partial detections and model-driven clustering to form a global representation, our method is able to generate a tight oriented bounding box for elongated object detection. We evaluate the effectiveness of our approach on two typical elongated objects in the COCO dataset, and other typical elongated objects, including rigid objects (pens, screwdrivers and wrenches) and non-rigid objects (cracks). Experimental results show that, compared with the state-of-the-art approaches, our method achieves a large margin of improvements for both detection and localization of elongated objects in images.
机译:在分析基于最先进的基于R-CNN的通用对象探测器的情况下,我们发现边界盒的低对象百分比(ORP)的对象的检测性能远低于整体平均值。细长的物体是示例。为了解决细长对象检测的低兽人问题,我们提出了一种混合方法,该方法采用更快的R-CNN来实现对象部件的鲁棒检测,以及一种对相关的部分检测进行组的新颖的模型驱动的聚类算法,并抑制错误检测。首先,我们用适当稳定的舷窗的部分区域建议培训更快的R-CNN。接下来,我们介绍了对部分检测的方向分类的深层CNN(DCNN)。然后,在更快的R-CNN和DCNN的输出上,自适应模型驱动群集的算法首先初始化具有数据驱动过程的细长对象的模型,在本地部分检测中,并通过模型驱动迭代地改进模型群集和数据驱动模型更新。通过利用更快的R-CNN来产生强大的部分检测和模型驱动的聚类来形成全局表示,我们的方法能够为细长物体检测产生一个狭窄的定向边界框。我们评估我们的方法在Coco DataSet中的两个典型的细长物体上的有效性,以及其他典型的细长物体,包括刚性物体(钢笔,螺丝刀和扳手)和非刚性物体(裂缝)。实验结果表明,与最先进的方法相比,我们的方法达到了图像中的细长物体的检测和定位的大幅度的改进余量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号