首页> 外文期刊>Pattern recognition letters >A method of cross-layer fusion multi-object detection and recognition based on improved faster R-CNN model in complex traffic environment
【24h】

A method of cross-layer fusion multi-object detection and recognition based on improved faster R-CNN model in complex traffic environment

机译:基于复杂交通环境中改进的R-CNN模型的跨层融合多对象检测和识别方法

获取原文
获取原文并翻译 | 示例

摘要

Improving the detection accuracy and speed is the prerequisite of multi-object recognition in the complex traffic environment. Despite object detection has made significant advances based on deep neural networks, it remains a challenge to focus on small and occlusion objects. We address this challenge by allowing multiscale fusion. We introduce a cross-layer fusion multi-object detection and recognition algorithm based on Faster R-CNN, an approach that the five-layer structure of VGG16 (Visual Geometry Group) is used to obtain more characteristic information. We implement this idea with lateral embedding the 1 & times;1 convolution kernel, max pooling and deconvolution, in conjunction with weighted balanced multi-class cross entropy loss function and Soft-NMS to control the imbalance between difficult and easy samples. Considering the actual situation in a complex traffic environment, we manually label mixed dataset. On Cityscapes and KITTI datasets, experimental results show that the proposed model achieves better effects than the current mainstream object detection models.(c) 2021 Elsevier B.V. All rights reserved.
机译:提高检测精度和速度是复杂流量环境中多对象识别的先决条件。尽管物体检测已经基于深度神经网络的进展,但仍然是专注于小和遮挡物体的挑战。我们通过允许多尺度融合来解决这一挑战。我们介绍了基于更快的R-CNN的跨层融合多物体检测和识别算法,一种方法是,VGG16(视觉几何组)的五层结构用于获得更多特征信息。我们用横向嵌入1和时间来实现这个想法; 1卷积内核,最大池和去卷积,配合加权平衡多级跨熵损失函数和软直播,以控制困难且易于样本之间的不平衡。考虑到复杂流量环境中的实际情况,我们手动标记混合数据集。在城市景观和基蒂数据集上,实验结果表明,该建议的模型比当前主流对象检测模型实现了更好的效果。(c)2021 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号