首页> 外文期刊>IEEE Transactions on Image Processing >A Robust Group-Sparse Representation Variational Method With Applications to Face Recognition
【24h】

A Robust Group-Sparse Representation Variational Method With Applications to Face Recognition

机译:具有应用面部识别的鲁棒组 - 稀疏表示变分方法

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we propose a Group-Sparse Representation-based method with applications to Face Recognition (GSR-FR). The novel sparse representation variational model includes a non-convex sparsity-inducing penalty and a robust non-convex loss function. The penalty encourages group sparsity by using an approximation of the l(0)-quasinorm, and the loos function is chosen to make the algorithm robust to noise, occlusions, and disguises. The solution of the non-trivial non-convex optimization problem is efficiently obtained by a majorization-minimization strategy combined with forward-backward splitting, which, in particular, reduces the solution to a sequence of easier convex optimization sub-problems. Extensive experiments on widely used face databases show the potentiality of the proposed model and demonstrate that the GSR-FR algorithm is competitive with the state-of-the-art methods based on sparse representation, especially for very low dimensional feature spaces.
机译:在本文中,我们提出了一种基于稀疏表示的基于组的方法,用于面对面识别(GSR-FR)。新颖的稀疏表示变分模型包括非凸稀稀齿的惩罚和鲁棒的非凸损失函数。罚款通过使用L(0)--QuasInorm的近似来鼓励小组稀疏性,并且选择LOOS功能以使算法强大地噪声,闭塞和伪装。通过组合前后分裂的多大化最小化策略有效地获得了非普通非凸优化问题的解决方案,特别是将解决方案降低到更容易凸优化子问题的序列。广泛使用的面部数据库的广泛实验显示了所提出的模型的潜力,并证明GSR-FR算法基于稀疏表示的最先进方法竞争,特别是对于非常低维特征空间。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号