首页> 外文期刊>IEEE Transactions on Image Processing >A Robust Group-Sparse Representation Variational Method With Applications to Face Recognition
【24h】

A Robust Group-Sparse Representation Variational Method With Applications to Face Recognition

机译:一种鲁棒的群体稀疏表示变分方法及其在人脸识别中的应用

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we propose a Group-Sparse Representation-based method with applications to Face Recognition (GSR-FR). The novel sparse representation variational model includes a non-convex sparsity-inducing penalty and a robust non-convex loss function. The penalty encourages group sparsity by using an approximation of the l(0)-quasinorm, and the loos function is chosen to make the algorithm robust to noise, occlusions, and disguises. The solution of the non-trivial non-convex optimization problem is efficiently obtained by a majorization-minimization strategy combined with forward-backward splitting, which, in particular, reduces the solution to a sequence of easier convex optimization sub-problems. Extensive experiments on widely used face databases show the potentiality of the proposed model and demonstrate that the GSR-FR algorithm is competitive with the state-of-the-art methods based on sparse representation, especially for very low dimensional feature spaces.
机译:在本文中,我们提出了一种基于组稀疏表示的方法,并将其应用于人脸识别(GSR-FR)。新颖的稀疏表示变分模型包括非凸稀疏诱导罚分和鲁棒的非凸损失函数。该惩罚通过使用l(0)-拟线性逼近来鼓励组稀疏性,并且选择loos函数以使该算法对噪声,遮挡和伪装具有鲁棒性。非平凡的非凸优化问题的解决方案是通过主化最小化策略与前向后向拆分相结合而有效地获得的,特别是将解决方案简化为一系列更简单的凸优化子问题。在广泛使用的人脸数据库上进行的大量实验证明了该模型的潜力,并证明了GSR-FR算法与基于稀疏表示的最新方法(特别是对于非常低维的特征空间)相比具有竞争力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号