首页> 外文期刊>IEEE Transactions on Image Processing >Robust Semantic Template Matching Using a Superpixel Region Binary Descriptor
【24h】

Robust Semantic Template Matching Using a Superpixel Region Binary Descriptor

机译:使用Superpixel Region二进制描述符匹配的强大语义模板

获取原文
获取原文并翻译 | 示例

摘要

Almost all conventional template-matching methods employ low-level image features to measure the similarity between a template image and a scene image using similarity measures, such as pixel intensity and pixel gradient. Although these methods have been widely used in many applications, they cannot simultaneously address all types of robustness challenges. In this paper, with the goal of simultaneously addressing the various challenges, we present a robust semantic template-matching (RSTM) approach. Inspired by the local binary descriptor, we propose a novel superpixel region binary descriptor (SRBD) to construct a multilevel semantic fusion feature vector for RSTM. SRBD uses a new kernel-distance-based simple linear iterative clustering method to extract the stable superpixels from the template image. Then, based on the average intensity difference between each superpixel region and its neighbors, the dominant gradient orientation of each superpixel can be obtained, and the semantic features of each superpixel can be described as the dominant orientation difference vector, which is coded as the rotation-invariant SRBD. In the offline matching phase, the fusion semantic feature vector of RSTM combines the multilevel SRBD features with different numbers of superpixels. In the online matching phase, to cope with rotation invariance, a marginal probability model is proposed and applied to locate the positions of template images in the scene image. Moreover, to accelerate computation, an image pyramid is employed. We conduct a series of experiments on a large dataset randomly selected from the MS COCO dataset to fully analyze the robustness of this approach. The experimental results show that RSTM simultaneously addresses rotation changes, scale changes, noise, occlusions, blur, nonlinear illumination changes, and deformation with high time efficiency while also outperforming the previous state-of-the-art template-matching methods.
机译:几乎所有传统的模板匹配方法采用低级图像特征,以使用诸如像素强度和像素梯度的相似度测量来测量模板图像和场景图像之间的相似性。虽然这些方法已广泛用于许多应用中,但它们不能同时解决所有类型的鲁棒性挑战。在本文中,目的是同时解决各种挑战,我们提出了一种强大的语义模板匹配(RSTM)方法。灵感来自本地二进制描述符,我们提出了一种新颖的Superpixel区域二进制描述符(SRBD),用于构建RSTM的多级语义融合特征向量。 SRBD采用基于新的内核 - 距离的简单线性迭代聚类方法,从模板图像中提取稳定的超像素。然后,基于每个超像素区域和其邻居之间的平均强度差,可以获得每个超像素的主导梯度取向,并且每个超像素的语义特征可以被描述为主要的取向差向量,其被编码为旋转-Invariant SRBD。在离线匹配阶段,RSTM的融合语义特征向量将多级SRBD功能与不同数量的超像素相结合。在在线匹配阶段,为了应对旋转不变性,提出了边缘概率模型并应用于在场景图像中定位模板图像的位置。此外,为了加速计算,采用图像金字塔。我们在从MS Coco DataSet中随机选择的大型数据集进行一系列实验,以完全分析这种方法的稳健性。实验结果表明,RSTM同时解决了旋转变化,缩放变化,噪声,闭塞,模糊,非线性照明变化,以及具有高时间效率的变形,同时还优于先前的最先进的模板匹配方法。

著录项

  • 来源
    《IEEE Transactions on Image Processing》 |2019年第6期|3061-3074|共14页
  • 作者单位

    Huazhong Univ Sci & Technol State Key Lab Digital Mfg Equipment & Technol Wuhan 430074 Hubei Peoples R China;

    Huazhong Univ Sci & Technol State Key Lab Digital Mfg Equipment & Technol Wuhan 430074 Hubei Peoples R China;

    Huazhong Univ Sci & Technol State Key Lab Digital Mfg Equipment & Technol Wuhan 430074 Hubei Peoples R China;

    Huazhong Univ Sci & Technol State Key Lab Digital Mfg Equipment & Technol Wuhan 430074 Hubei Peoples R China;

    Huazhong Univ Sci & Technol State Key Lab Digital Mfg Equipment & Technol Wuhan 430074 Hubei Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Template matching; image matching; image feature; superpixels descriptor;

    机译:模板匹配;图像匹配;图像功能;Superpixels描述符;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号