首页> 外文期刊>IEEE Transactions on Image Processing >Nonconvex-Sparsity and Nonlocal-Smoothness-Based Blind Hyperspectral Unmixing
【24h】

Nonconvex-Sparsity and Nonlocal-Smoothness-Based Blind Hyperspectral Unmixing

机译:非渗透稀疏性和非识别平滑度的盲光超光照

获取原文
获取原文并翻译 | 示例

摘要

Blind hyperspectral unmixing (HU), as a crucial technique for hyperspectral data exploitation, aims to decompose mixed pixels into a collection of constituent materials weighted by the corresponding fractional abundances. In recent years, nonnegative matrix factorization (NMF)-based methods have become more and more popular for this task and achieved promising performance. Among these methods, two types of properties upon the abundances, namely, the sparseness and the structural smoothness, have been explored and shown to be important for blind HU. However, all of the previous methods ignore another important insightful property possessed by a natural hyperspectral image (HSI), non-local smoothness, which means that similar patches in a larger region of an HSI are sharing the similar smoothness structure. Based on the previous attempts on other tasks, such a prior structure reflects intrinsic configurations underlying an HSI and is thus expected to largely improve the performance of the investigated HU problem. In this paper, we first consider such prior in HSI by encoding it as the non-local total variation (NLTV) regularizer. Furthermore, by fully exploring the intrinsic structure of HSI, we generalize NLTV to non-local HSI TV (NLHTV) to make the model more suitable for the blind HU task. By incorporating these two regularizers, together with a non-convex log-sum form regularizer characterizing the sparseness of abundance maps, to the NMF model, we propose novel blind HU models named NLTV/NLHTV and log-sum regularized NMF (NLTV-LSRNMF/NLHTV-LSRNMF), respectively. To solve the proposed models, an efficient algorithm is designed based on an alternative optimization strategy (AOS) and alternating direction method of multipliers (ADMM). Extensive experiments conducted on both simulated and real hyperspectral data sets substantiate the superiority of the proposed approach over other competing ones for blind HU task.
机译:盲高光谱解混(Hu)作为高光谱数据剥削的重要技术,旨在将混合像素分解成相应的分数丰度加权的组成材料的集合。近年来,基于非负矩阵分解(NMF)的方法对这项任务变得越来越受欢迎,并且取得了有希望的表现。在这些方法中,已经探索了两种类型的性质,即稀疏性和结构光滑度,并显示为盲人胡锦涛。然而,所有先前的方法都忽略了由天然高光谱图像(HSI),非局部平滑度具有的另一个重要的富有识别性,这意味着HSI的较大区域中的类似贴片是共享类似的平滑度结构。基于以前的其他任务的尝试,这样的现有结构反映了HSI的内在配置,因此预期在很大程度上提高了研究的HU问题的性能。在本文中,我们首先通过将其作为非局部总变化(NLTV)规范器进行编码,首先在HSI中考虑这样的事先。此外,通过完全探索HSI的内在结构,我们将NLTV概括为非本地HSI电视(NLHTV),使模型更适合盲人胡武器任务。通过将这两个常规程序融合在一起,与非凸起的对数规范器一起表征丰富地图的稀疏性,向NMF模型提出了名为NLTV / NLHTV的新型盲胡型和日志和正则化NMF(NLTV-LSRNMF /分别为nlhtv-lsrnmf)。为了解决所提出的模型,基于替代优化策略(AOS)和乘法器(ADMM)的交替方向方法设计了一种有效的算法。在模拟和实际高光谱数据集上进行的广泛实验证实了在其他竞争对手的盲人胡后任务中提出的方法的优势。

著录项

  • 来源
    《IEEE Transactions on Image Processing》 |2019年第6期|2991-3006|共16页
  • 作者单位

    Xi An Jiao Tong Univ Sch Math & Stat Xian 710049 Shaanxi Peoples R China|Xi An Jiao Tong Univ Key Lab Intelligent Networks & Network Secur Minist Educ Xian 710049 Shaanxi Peoples R China;

    Xi An Jiao Tong Univ Sch Math & Stat Xian 710049 Shaanxi Peoples R China|Xi An Jiao Tong Univ Key Lab Intelligent Networks & Network Secur Minist Educ Xian 710049 Shaanxi Peoples R China;

    Xi An Jiao Tong Univ Sch Math & Stat Xian 710049 Shaanxi Peoples R China|Xi An Jiao Tong Univ Key Lab Intelligent Networks & Network Secur Minist Educ Xian 710049 Shaanxi Peoples R China;

    Shaanxi Normal Univ Sch Math & Informat Sci Xian 710119 Shaanxi Peoples R China;

    Xi An Jiao Tong Univ Sch Math & Stat Xian 710049 Shaanxi Peoples R China|Xi An Jiao Tong Univ Key Lab Intelligent Networks & Network Secur Minist Educ Xian 710049 Shaanxi Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Hyperspetral imaging; blind unmixing; non-negative matrix factorization; log-sum penalty; non-local total variation regularization;

    机译:Hyperspetral成像;盲目的解混;非负矩阵分解;对数罚款;非本地总变量正规化;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号