首页> 外文期刊>IEEE Transactions on Image Processing >Nonconvex-Sparsity and Nonlocal-Smoothness-Based Blind Hyperspectral Unmixing
【24h】

Nonconvex-Sparsity and Nonlocal-Smoothness-Based Blind Hyperspectral Unmixing

机译:非凸稀疏和基于非局部平滑的盲高光谱分解

获取原文
获取原文并翻译 | 示例

摘要

Blind hyperspectral unmixing (HU), as a crucial technique for hyperspectral data exploitation, aims to decompose mixed pixels into a collection of constituent materials weighted by the corresponding fractional abundances. In recent years, nonnegative matrix factorization (NMF)-based methods have become more and more popular for this task and achieved promising performance. Among these methods, two types of properties upon the abundances, namely, the sparseness and the structural smoothness, have been explored and shown to be important for blind HU. However, all of the previous methods ignore another important insightful property possessed by a natural hyperspectral image (HSI), non-local smoothness, which means that similar patches in a larger region of an HSI are sharing the similar smoothness structure. Based on the previous attempts on other tasks, such a prior structure reflects intrinsic configurations underlying an HSI and is thus expected to largely improve the performance of the investigated HU problem. In this paper, we first consider such prior in HSI by encoding it as the non-local total variation (NLTV) regularizer. Furthermore, by fully exploring the intrinsic structure of HSI, we generalize NLTV to non-local HSI TV (NLHTV) to make the model more suitable for the blind HU task. By incorporating these two regularizers, together with a non-convex log-sum form regularizer characterizing the sparseness of abundance maps, to the NMF model, we propose novel blind HU models named NLTV/NLHTV and log-sum regularized NMF (NLTV-LSRNMF/NLHTV-LSRNMF), respectively. To solve the proposed models, an efficient algorithm is designed based on an alternative optimization strategy (AOS) and alternating direction method of multipliers (ADMM). Extensive experiments conducted on both simulated and real hyperspectral data sets substantiate the superiority of the proposed approach over other competing ones for blind HU task.
机译:盲高光谱解混(HU)作为高光谱数据开发的一项关键技术,旨在将混合像素分解为由相应的分数丰度加权的组成材料的集合。近年来,基于非负矩阵分解(NMF)的方法已变得越来越受欢迎,并获得了可观的性能。在这些方法中,已经探究了两种类型的丰富性,即稀疏性和结构光滑度,它们对于盲人HU来说很重要。但是,所有以前的方法都忽略了自然高光谱图像(HSI)拥有的另一个重要的有洞察的特性,即非局部平滑度,这意味着HSI较大区域中的相似色块共享相似的平滑度结构。基于先前在其他任务上的尝试,这样的现有结构反映了HSI背后的固有配置,因此有望大大提高所研究的HU问题的性能。在本文中,我们首先将HSI中的先验编码为非局部总方差(NLTV)正则化器。此外,通过充分探索HSI的内在结构,我们将NLTV泛化为非本地HSI TV(NLHTV),以使该模型更适合盲HU任务。通过将这两个正则化函数以及表征丰度图稀疏性的非凸对数和正则化正则化函数合并到NMF模型中,我们提出了名为NLTV / NLHTV和对数和正则化NMF(NLTV-LSRNMF / NLHTV-LSRNMF)。为了解决所提出的模型,基于替代优化策略(AOS)和乘数交替方向方法(ADMM)设计了一种有效的算法。在模拟和实际高光谱数据集上进行的大量实验证实了该方法在盲目HU任务方面优于其他竞争方法的优越性。

著录项

  • 来源
    《IEEE Transactions on Image Processing》 |2019年第6期|2991-3006|共16页
  • 作者单位

    Xi An Jiao Tong Univ, Sch Math & Stat, Xian 710049, Shaanxi, Peoples R China|Xi An Jiao Tong Univ, Key Lab Intelligent Networks & Network Secur, Minist Educ, Xian 710049, Shaanxi, Peoples R China;

    Xi An Jiao Tong Univ, Sch Math & Stat, Xian 710049, Shaanxi, Peoples R China|Xi An Jiao Tong Univ, Key Lab Intelligent Networks & Network Secur, Minist Educ, Xian 710049, Shaanxi, Peoples R China;

    Xi An Jiao Tong Univ, Sch Math & Stat, Xian 710049, Shaanxi, Peoples R China|Xi An Jiao Tong Univ, Key Lab Intelligent Networks & Network Secur, Minist Educ, Xian 710049, Shaanxi, Peoples R China;

    Shaanxi Normal Univ, Sch Math & Informat Sci, Xian 710119, Shaanxi, Peoples R China;

    Xi An Jiao Tong Univ, Sch Math & Stat, Xian 710049, Shaanxi, Peoples R China|Xi An Jiao Tong Univ, Key Lab Intelligent Networks & Network Secur, Minist Educ, Xian 710049, Shaanxi, Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Hyperspetral imaging; blind unmixing; non-negative matrix factorization; log-sum penalty; non-local total variation regularization;

    机译:Hyperspetral成像;盲目的解混;非负矩阵分解;对数罚款;非本地总变量正规化;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号