首页> 外文期刊>Signal processing >Elastic constraints on split hierarchical abundances for blind hyperspectral unmixing
【24h】

Elastic constraints on split hierarchical abundances for blind hyperspectral unmixing

机译:盲高光谱拆分分层丰富的弹性约束

获取原文
获取原文并翻译 | 示例

摘要

The applications of Hyperspectral Image (HI) are limited for the existence of the "mixed" pixels. The Blind spectral unmixing (BSU) aims to capture the spectral signatures and extract the corresponding fractional abundance maps from the HI. The existing unmixing approaches do not well concurrently consider the structure of the local patches inside each abundance map and the diversity of different endmember signatures, which could deteriorate the performance of the subsequent unmixing. In this paper, we advocate an elastic constrained split abundances method for BSU. It does not need to know the statistical distribution of the HIs. To capture and seamlessly incorporate both the homogeneous information and distinguishable knowledge across different modalities, the divergence among the different endmembers is maximized, and each endmember signature is projected into a common semantic space, furthermore, each abundance map is differentiated into a consensus part and diverse local patches. Extensive experiments are implemented on synthetic and real HIs, and the vigorous experimental results validate the effectiveness of the proposed model and algorithm.
机译:高光谱图像(HI)的应用限于存在“混合”像素的存在。盲光谱解密(BSU)旨在捕获光谱签名并从HI中提取相应的分数丰富图。现有的未混合方法并不适当地考虑每个丰度图中的本地补丁的结构以及不同的终端会议签名的多样性,这可能会降低随后的解密的性能。在本文中,我们倡导了BSU的弹性受限分裂丰富法。它不需要知道他的统计分布。为了捕获并无缝地纳入各种方式的同质信息和可区分的知识,不同的终端用主义者之间的分歧最大化,并且每个终点签名都投入到一个常见的语义空间中,此外,每个丰富的地图都被区别为共识部分和多样化本地补丁。在合成和真实的情况下实现了广泛的实验,并且剧烈的实验结果验证了所提出的模型和算法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号