首页> 外文期刊>IEEE Transactions on Image Processing >Automated Method for Retinal Artery/Vein Separation via Graph Search Metaheuristic Approach
【24h】

Automated Method for Retinal Artery/Vein Separation via Graph Search Metaheuristic Approach

机译:图搜索元启发式方法自动分离视网膜动脉/静脉

获取原文
获取原文并翻译 | 示例

摘要

Separation of the vascular tree into arteries and veins is a fundamental prerequisite in the automatic diagnosis of retinal biomarkers associated with systemic and neurode-generative diseases. In this paper, we present a novel graph search metaheuristic approach for automatic separation of arteries/veins (A/V) from color fundus images. Our method exploits local information to disentangle the complex vascular tree into multiple subtrees, and global information to label these vessel subtrees into arteries and veins. Given a binary vessel map, a graph representation of the vascular network is constructed representing the topological and spatial connectivity of the vascular structures. Based on the anatomical uniqueness at vessel crossing and branching points, the vascular tree is split into multiple subtrees containing arteries and veins. Finally, the identified vessel subtrees are labeled with A/V based on a set of hand-crafted features trained with random forest classifier. The proposed method has been tested on four different publicly available retinal datasets with an average accuracy of 94.7%, 93.2%, 96.8%, and 90.2% across AV-DRIVE, CT-DRIVE, INSPIRE-AVR, and WIDE datasets, respectively. These results demonstrate the superiority of our proposed approach in outperforming the state-of-the-art methods for A/V separation.
机译:将血管树分成动脉和静脉是自动诊断与系统性疾病和神经退行性疾病相关的视网膜生物标志物的基本前提。在本文中,我们提出了一种新颖的图搜索元启发式方法,用于从彩色眼底图像中自动分离动脉/静脉(A / V)。我们的方法利用局部信息将复杂的血管树分解为多个子树,并利用全局信息将这些血管子树标记为动脉和静脉。给定二元血管图,构建血管网络的图形表示,表示血管结构的拓扑和空间连通性。基于血管交叉和分支点的解剖学唯一性,将血管树分为多个包含动脉和静脉的子树。最后,基于随机森林分类器训练的一组手工制作的特征,对识别出的船只子树进行A / V标记。该方法已在四个不同的公共视网膜数据集上进行了测试,在AV-DRIVE,CT-DRIVE,INSPIRE-AVR和WIDE数据集上的平均准确度分别为94.7%,93.2%,96.8%和90.2%。这些结果证明了我们提出的方法在优于A / V分离的最新方法方面的优势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号