首页> 外文期刊>IEEE Transactions on Image Processing >Automated Method for Retinal Artery/Vein Separation via Graph Search Metaheuristic Approach
【24h】

Automated Method for Retinal Artery/Vein Separation via Graph Search Metaheuristic Approach

机译:通过曲线图的视网膜动脉/静脉分离自动化方法

获取原文
获取原文并翻译 | 示例

摘要

Separation of the vascular tree into arteries and veins is a fundamental prerequisite in the automatic diagnosis of retinal biomarkers associated with systemic and neurode-generative diseases. In this paper, we present a novel graph search metaheuristic approach for automatic separation of arteries/veins (A/V) from color fundus images. Our method exploits local information to disentangle the complex vascular tree into multiple subtrees, and global information to label these vessel subtrees into arteries and veins. Given a binary vessel map, a graph representation of the vascular network is constructed representing the topological and spatial connectivity of the vascular structures. Based on the anatomical uniqueness at vessel crossing and branching points, the vascular tree is split into multiple subtrees containing arteries and veins. Finally, the identified vessel subtrees are labeled with A/V based on a set of hand-crafted features trained with random forest classifier. The proposed method has been tested on four different publicly available retinal datasets with an average accuracy of 94.7%, 93.2%, 96.8%, and 90.2% across AV-DRIVE, CT-DRIVE, INSPIRE-AVR, and WIDE datasets, respectively. These results demonstrate the superiority of our proposed approach in outperforming the state-of-the-art methods for A/V separation.
机译:血管树分离成动脉和静脉是一种基本的先决条件,即与系统性和神经生成疾病相关的视网膜生物标志物的自动诊断。在本文中,我们提出了一种新的曲线图搜索从彩色眼底图像自动分离动脉/静脉(A / V)的研究。我们的方法利用本地信息解开复杂的血管树成为多个子树,以及将这些船只的全球信息标记为动脉和静脉。给定二进制血管图,构造血管网络的图表表示血管结构的拓扑和空间连接。基于血管交叉和分支点的解剖唯一性,血管树被分成含有动脉和静脉的多个子树。最后,鉴定的船只子树是基于由随机林分类器训练的一组手工制作的特征用A / V标记。所提出的方法已经在四种不同的公共视网膜数据集上进行了测试,平均精度分别为94.7%,93.2%,96.8%和90.2%,跨越AV驱动,CT-Drive,Inspire-AVR和宽数据集。这些结果表明了我们提出的方法的优越性,以满足A / V分离的最先进的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号