首页> 外文期刊>IEEE Transactions on Image Processing >Hierarchical Tracking by Reinforcement Learning-Based Searching and Coarse-to-Fine Verifying
【24h】

Hierarchical Tracking by Reinforcement Learning-Based Searching and Coarse-to-Fine Verifying

机译:通过基于强化学习的搜索和粗到精的验证进行分层跟踪

获取原文
获取原文并翻译 | 示例

摘要

A class-agnostic tracker typically consists of three key components, i.e., its motion model, its target appearance model, and its updating strategy. However, most recent top-performing trackers mainly focus on constructing complicated appearance models and updating strategies, while using comparatively simple and heuristic motion models that may result in an inefficient search and degrade the tracking performance. To address this issue, we propose a hierarchical tracker that learns to move and track based on the combination of data-driven search at the coarse level and coarse-to-fine verification at the fine level. At the coarse level, a data-driven motion model learned from deep recurrent reinforcement learning provides our tracker with coarse localization of an object. By formulating motion search as an action-decision problem in reinforcement learning, our tracker utilizes a recurrent convolutional neural network-based deep Q-network to effectively learn data-driven searching policies. The learned motion model can not only significantly reduce the search space but also provide more reliable interested regions for further verifying. At the fine level, a kernelized correlation filter (KCF)-based appearance model is adopted to densely yet efficiently verify a local region centered on the predicted location from the motion model. Through use of circulant matrices and fast Fourier transformation, a large number of candidate samples in the local region can be efficiently and effectively evaluated by the KCF-based appearance model. Finally, a simple yet robust estimator is designed to analyze possible tracking failure. The experiments on OTB50 and OTB100 illustrate that our tracker achieves better performance than the state-of-the-art trackers.
机译:与类无关的跟踪器通常由三个关键组件组成,即其运动模型,目标外观模型及其更新策略。但是,最新的表现最佳的跟踪器主要集中在构建复杂的外观模型和更新策略,同时使用相对简单和启发式的运动模型,这可能会导致搜索效率低下并降低跟踪性能。为了解决此问题,我们提出了一种分层跟踪器,该跟踪器基于在粗糙级别的数据驱动搜索和精细级别的从细到精验证的学习来学习移动和跟踪。在粗略的层次上,从深度递归强化学习中学到的数据驱动的运动模型为跟踪器提供了对象的粗略定位。通过将运动搜索表述为强化学习中的动作决定问题,我们的跟踪器利用基于循环卷积神经网络的深度Q网络来有效地学习数据驱动的搜索策略。学习的运动模型不仅可以大大减少搜索空间,而且可以提供更可靠的感兴趣区域以进行进一步验证。在精细级别上,采用基于核相关滤波器(KCF)的外观模型来密集而有效地验证以运动模型的预测位置为中心的局部区域。通过使用循环矩阵和快速傅立叶变换,可以通过基于KCF的外观模型来高效地评估局部区域中的大量候选样本。最后,设计了一个简单而强大的估计器来分析可能的跟踪失败。在OTB50和OTB100上进行的实验表明,我们的跟踪器比最新的跟踪器具有更好的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号