首页> 外文期刊>IEEE Transactions on Image Processing >Tensor-Based Low-Dimensional Representation Learning for Multi-View Clustering
【24h】

Tensor-Based Low-Dimensional Representation Learning for Multi-View Clustering

机译:用于多视图聚类的基于张量的低维表示学习

获取原文
获取原文并翻译 | 示例

摘要

With the development of data collection techniques, multi-view clustering becomes an emerging research direction to improve the clustering performance. This paper has shown that leveraging multi-view information is able to provide a rich and comprehensive description. One of the core problems is how to sufficiently represent multi-view data in the analysis. In this paper, we introduce a tensor-based representation learning method for multi-view clustering (tRLMvC) that can unify heterogeneous and high-dimensional multi-view feature spaces to a low-dimensional shared latent feature space and improve multi-view clustering performance. To sufficiently capture plenty multi-view information, the tRLMvC represents multi-view data as a third-order tensor, expresses each tensorial data point as a sparse t-linear combination of all data points with t-product, and constructs a self-expressive tensor through reconstruction coefficients. The low-dimensional multi-view data representation in the shared latent feature space can be obtained via Tucker decomposition on the self-expressive tensor. These two parts are iteratively performed so that the interaction between self-expressive tensor learning and its factorization can be enhanced and the new representation can be effectively generated for clustering purpose. We conduct extensive experiments on eight multi-view data sets and compare the proposed model with the state-of-the-art methods. Experimental results have shown that tRLMvC outperforms the baselines in terms of various evaluation metrics.
机译:随着数据收集技术的发展,多视图聚类成为提高聚类性能的新兴研究方向。本文表明,利用多视图信息可以提供丰富而全面的描述。核心问题之一是如何在分析中充分表示多视图数据。本文介绍了一种基于张量的多视图聚类表示学习方法(tRLMvC),该方法可以将异构和高维多视图特征空间统一为低维共享潜在特征空间并提高多视图聚类性能。为了充分捕获大量的多视图信息,tRLMvC将多视图数据表示为三阶张量,将每个张量数据点表示为所有数据点与t积的稀疏t线性组合,并构造自表达张量通过重建系数。共享潜在特征空间中的低维多视图数据表示可以通过自表达张量上的Tucker分解获得。这两个部分是迭代执行的,因此可以增强自表达张量学习及其因式分解之间的交互作用,并且可以有效地生成新的表示形式进行聚类。我们对八个多视图数据集进行了广泛的实验,并将所提出的模型与最新方法进行了比较。实验结果表明,在各种评估指标方面,tRLMvC均优于基线。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号