首页> 外文期刊>IEEE Transactions on Image Processing >A New Multi-Atlas Registration Framework for Multimodal Pathological Images Using Conventional Monomodal Normal Atlases
【24h】

A New Multi-Atlas Registration Framework for Multimodal Pathological Images Using Conventional Monomodal Normal Atlases

机译:使用常规单峰法线图集的多模式病理图像的新多图集配准框架

获取原文
获取原文并翻译 | 示例

摘要

Using multi-atlas registration (MAR), information carried by atlases can be transferred onto a new input image for the tasks of region-of-interest (ROI) segmentation, anatomical landmark detection, and so on. Conventional atlases used in MAR methods are monomodal and contain only normal anatomical structures. Therefore, the majority of MAR methods cannot handle input multimodal pathological images, which are often collected in routine image-based diagnosis. This is because registering monomodal atlases with normal appearances to multimodal pathological images involves two major problems: 1) missing imaging modalities in the monomodal atlases and 2) influence from pathological regions. In this paper, we propose a new MAR framework to tackle these problems. In this framework, deep learning-based image synthesizers are applied for synthesizing multimodal normal atlases from conventional monomodal normal atlases. To reduce the influence from pathological regions, we further propose a multimodal low-rank approach to recover multimodal normal-looking images from multimodal pathological images. Finally, the multimodal normal atlases can be registered to the recovered multimodal images in a multi-channel way. We evaluate our MAR framework via brain ROI segmentation of multimodal tumor brain images. Due to the utilization of multimodal information and the reduced influence from pathological regions, experimental results show that registration based on our method is more accurate and robust, leading to significantly improved brain ROI segmentation compared with the state-of-the-art methods.
机译:使用多图集配准(MAR),可以将图集携带的信息传输到新的输入图像上,以进行感兴趣区域(ROI)分割,解剖学界标检测等任务。 MAR方法中使用的常规地图集是单峰的,仅包含正常的解剖结构。因此,大多数MAR方法无法处理输入的多模态病理图像,这些图像通常是在基于常规图像的诊断中收集的。这是因为将具有正常外观的单峰图谱注册到多峰病理图像涉及两个主要问题:1)单峰图谱中缺少成像模态; 2)来自病理区域的影响。在本文中,我们提出了一个新的MAR框架来解决这些问题。在此框架中,基于深度学习的图像合成器用于从常规单峰法线图谱合成多峰法线图谱。为了减少来自病理区域的影响,我们进一步提出了一种多峰低秩方法,以从多峰病理图像中恢复多峰正常外观图像。最后,多峰法线图谱可以多通道方式注册到恢复的多峰图像中。我们通过多模态肿瘤脑图像的脑ROI分割评估我们的MAR框架。由于多模式信息的利用和来自病理区域的影响的减少,实验结果表明,与现有技术方法相比,基于我们方法的配准更加准确和可靠,从而显着改善了脑ROI分割。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号