首页> 外文期刊>IEEE Transactions on Image Processing >Depth Restoration From RGB-D Data via Joint Adaptive Regularization and Thresholding on Manifolds
【24h】

Depth Restoration From RGB-D Data via Joint Adaptive Regularization and Thresholding on Manifolds

机译:通过流形上的联合自适应正则化和阈值处理从RGB-D数据中恢复深度

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we propose a novel depth restoration algorithm from RGB-D data through combining characteristics of local and non-local manifolds, which provide low-dimensional parameterizations of the local and non-local geometry of depth maps. Specifically, on the one hand, a local manifold model is defined to favor local neighboring relationship of pixels in depth, according to which, manifold regularization is introduced to promote smoothing along the manifold structure. On the other hand, the non-local characteristics of the patch-based manifold can be used to build highly data-adaptive orthogonal bases to extract elongated image patterns, accounting for self-similar structures in the manifold. We further define a manifold thresholding operator in 3D adaptive orthogonal spectral bases-eigenvectors of the discrete Laplacian of local and non-local manifolds-to retain only low graph frequencies for depth maps restoration. Finally, we propose a unified alternating direction method of multipliers optimization framework, which elegantly casts the adaptive manifold regularization and thresholding jointly to regularize the inverse problem of depth maps recovery. Experimental results demonstrate that our method achieves superior performance compared with the state-of-the-art works with respect to both objective and subjective quality evaluations.
机译:在本文中,我们通过结合局部和非局部流形的特征,从RGB-D数据中提出了一种新的深度恢复算法,该算法提供了深度图的局部和非局部几何的低维参数化。具体地,一方面,定义局部流形模型以支持深度上的像素的局部相邻关系,据此,引入流形正则化以促进沿流形结构的平滑。另一方面,基于补丁的歧管的非局部特性可用于构建高度数据自适应的正交基,以提取细长的图像图案,从而考虑了歧管中的自相似结构。我们进一步在局部和非局部流形的离散拉普拉斯算子的3D自适应正交谱库-特征向量中定义流形阈值算子,以仅保留低图频率用于深度图恢复。最后,我们提出了一种乘数优化框架的统一交替方向方法,该方法巧妙地将自适应流形正则化和阈值转换共同用于深度图恢复的逆问题的正则化。实验结果表明,在客观和主观质量评估方面,与最新技术相比,我们的方法具有更高的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号