首页> 外文期刊>Geoscience and Remote Sensing, IEEE Transactions on >Adaptive Classification for Hyperspectral Image Data Using Manifold Regularization Kernel Machines
【24h】

Adaptive Classification for Hyperspectral Image Data Using Manifold Regularization Kernel Machines

机译:使用流形正则化核机器对高光谱图像数据进行自适应分类

获取原文
获取原文并翻译 | 示例

摘要

Localized training data typically utilized to develop a classifier may not be fully representative of class signatures over large areas but could potentially provide useful information which can be updated to reflect local conditions in other areas. An adaptive classification framework is proposed for this purpose, whereby a kernel machine is first trained with labeled data and then iteratively adapted to new data using manifold regularization. Assuming that no class labels are available for the data for which spectral drift may have occurred, resemblance associated with the clustering condition on the data manifold is used to bridge the change in spectra between the two data sets. Experiments are conducted using spatially disjoint data in EO-1 Hyperion images, and the results of the proposed framework are compared to semisupervised kernel machines.
机译:通常用于开发分类器的本地化培训数据可能无法完全代表大范围内的班级签名,但可能会提供有用的信息,可以对其进行更新以反映其他地区的当地情况。为此,提出了一种自适应分类框架,在该框架中,首先使用标记的数据对内核机器进行训练,然后使用流形规则化将其迭代地适应于新数据。假设没有类别标签可用于可能发生光谱漂移的数据,则与数据流形上的聚类条件相关联的相似度用于桥接两个数据集之间的光谱变化。使用EO-1 Hyperion图像中的空间不相交数据进行了实验,并将所提出框架的结果与半监督内核计算机进行了比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号