首页> 外文OA文献 >The Robust Classification of Hyperspectral Images Using Adaptive Wavelet Kernel Support Vector Data Description
【2h】

The Robust Classification of Hyperspectral Images Using Adaptive Wavelet Kernel Support Vector Data Description

机译:利用自适应小波核支持向量数据描述的高光谱图像鲁棒分类

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Detection of targets in hyperspectral images is a specific case of one-class classification. It is particularly relevant in the area of remote sensing and has received considerable interest in the past few years. The thesis proposes the use of wavelet functions as kernels with Support Vector Data Description for target detection in hyperspectral images. Specifically, it proposes the Adaptive Wavelet Kernel Support Vector Data Description (AWK-SVDD) that learns the optimal wavelet function to be used given the target signature. The performance and computational requirements of AWK-SVDD is compared with that of existing methods and other wavelet functions.An introduction to target detection and target detection in the context of hyperspectral images is given. This thesis also includes an overview of the thesis and lists the contributions of the thesis. A brief mathematical background into one-class classification in reference to target detection is included. Also described are the existing methods and introduces essential concepts relevant to the proposed approach. The use of wavelet functions as kernels with Support Vector Data Description, the conditions for use of wavelet functions and the use of two functions in order to form the kernel are checked and analyzed. The proposed approach, AWKSVDD, is mathematically described. The details of the implementation and the results when applied to the Urban dataset of hyperspectral images with a random target signature are given. The results confirm the better performance of AWK-SVDD compared to conventional kernels, wavelet kernels and the two-function Morlet-Radial Basis Function kernel. The problems faced with convergence during the Support Vector Data Description optimization are discussed. The thesis concludes with the suggestions for future work.
机译:高光谱图像中目标的检测是一类分类的一种特殊情况。它在遥感领域特别重要,并且在过去几年中引起了极大的兴趣。本文提出将小波函数作为支持向量数据描述的核用于高光谱图像中的目标检测。具体而言,它提出了自适应小波内核支持向量数据描述(AWK-SVDD),该方法学习在给定目标签名的情况下要使用的最佳小波函数。将AWK-SVDD的性能和计算要求与现有方法和其他小波函数进行了比较。介绍了高光谱图像环境下的目标检测和目标检测。本文还对论文进行了概述,并列出了论文的贡献。包括针对目标检测的一类分类的简要数学背景。还介绍了现有方法,并介绍了与建议方法相关的基本概念。检查和分析了将小波函数用作支持向量数据描述的内核,使用小波函数的条件以及使用两个函数形成内核的条件。数学上描述了所建议的方法AWKSVDD。给出了实现细节和应用于带有随机目标特征的高光谱图像城市数据集时的结果。结果证实了与常规内核,小波内核和二功能Morlet-Radial基函数内核相比,AWK-SVDD的性能更好。讨论了支持向量数据描述优化过程中收敛所面临的问题。本文最后提出了对未来工作的建议。

著录项

  • 作者

    Kollegala Revathi;

  • 作者单位
  • 年度 2012
  • 总页数
  • 原文格式 PDF
  • 正文语种 en_US
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号