首页> 外文期刊>IEEE Transactions on Image Processing >A Continuous Random Walk Model With Explicit Coherence Regularization for Image Segmentation
【24h】

A Continuous Random Walk Model With Explicit Coherence Regularization for Image Segmentation

机译:具有显着相干正则化的连续随机游动模型用于图像分割

获取原文
获取原文并翻译 | 示例

摘要

Random walk is a popular and efficient algorithm for image segmentation, especially for extracting regions of interest (ROIs). One difficulty with the random walk algorithm is the requirement for solving a huge sparse linear system when applied to large images. Another limitation is its sensitivity to seeds distribution, i.e., the segmentation result depends on the number of seeds as well as their placement, which puts a burden on users. In this paper, we first propose a continuous random walk model with explicit coherence regularization (CRWCR) for the extracted ROI, which helps to reduce the seeds sensitivity, so as to reduce the user interactions. Then, a very efficient algorithm to solve the CRWCR model will be developed, which helps to remove the difficulty of solving huge linear systems. Our algorithm consists of two stages: initialization by performing one-dimensional random walk sweeping based on user-provided seeds, followed by the alternating direction scheme, i.e., Peaceman–Rachford scheme for further correction. The first stage aims to provide a good initial guess for the ROI, and it is very fast since we just solve a limited number of one-dimensional random walk problems. Then, this initial guess is evolved to the ideal solution by applying the second stage, which should also be very efficient since it fits well for GPU computing, and 10 iterations are usually sufficient for convergence. Numerical experiments are provided to validate the proposed model as well as the efficiency of the two-stage algorithm.
机译:随机游走是一种流行且有效的图像分割算法,尤其是用于提取感兴趣区域(ROI)的算法。随机游走算法的一个困难是在应用于大图像时需要解决庞大的稀疏线性系统。另一个限制是其对种子分布的敏感性,即,分割结果取决于种子的数量及其放置,这给使用者带来了负担。在本文中,我们首先针对提取的ROI提出了具有显式一致性正则化(CRWCR)的连续随机游走模型,这有助于降低种子的敏感性,从而减少用户交互。然后,将开发一种非常有效的求解CRWCR模型的算法,这有助于消除求解大型线性系统的困难。我们的算法包括两个阶段:通过基于用户提供的种子执行一维随机游走扫描来初始化,然后是交替方向方案(即Peaceman-Rachford方案)以进行进一步校正。第一阶段旨在为ROI提供良好的初始猜测,并且由于我们仅解决了有限的一维随机游走问题,因此速度非常快。然后,通过应用第二阶段,将最初的猜测演变为理想的解决方案,由于它非常适合GPU计算,因此十次迭代通常也足够高效,并且通常需要进行10次迭代才能收敛。提供数值实验以验证所提出的模型以及两阶段算法的效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号