首页> 外文期刊>Biomedical and Health Informatics, IEEE Journal of >Lumen Segmentation in Intravascular Optical Coherence Tomography Using Backscattering Tracked and Initialized Random Walks
【24h】

Lumen Segmentation in Intravascular Optical Coherence Tomography Using Backscattering Tracked and Initialized Random Walks

机译:血管内光学相干断层扫描中的流明分割使用反向散射跟踪和初始化的随机游动。

获取原文
获取原文并翻译 | 示例

摘要

Intravascular imaging using ultrasound or optical coherence tomography (OCT) is predominantly used to adjunct clinical information in interventional cardiology. OCT provides high-resolution images for detailed investigation of atherosclerosis-induced thickening of the lumen wall resulting in arterial blockage and triggering acute coronary events. However, the stochastic uncertainty of speckles limits effective visual investigation over large volume of pullback data, and clinicians are challenged by their inability to investigate subtle variations in the lumen topology associated with plaque vulnerability and onset of necrosis. This paper presents a lumen segmentation method using OCT imaging physics-based graph representation of signals and random walks image segmentation approaches. The edge weights in the graph are assigned incorporating OCT signal attenuation physics models. Optical backscattering maxima is tracked along each A-scan of OCT and is subsequently refined using global graylevel statistics and used for initializing seeds for the random walks image segmentation. Accuracy of lumen versus segmentation has been measured on 15 and 6 pullbacks, each with 150–200 frames using 1) Cohen's kappa coefficient measured with respect to cardiologist's annotation and 2) divergence of histogram of the segments computed with Kullback–Leibler and Bhattacharya measures . High segmentation accuracy and consistency substantiates the characteristics of this method to reliably segment lumen across pullbacks in the presence of vulnerability cues and necrotic pool and has a deterministic finite time-complexity.- This paper in general also illustrates the development of methods and framework for tissue classification and segmentation incorporating cues of tissue–energy interaction physics in imaging.
机译:使用超声或光学相干断层扫描(OCT)的血管内成像主要用于辅助介入心脏病学中的临床信息。 OCT提供了高分辨率图像,用于详细研究动脉粥样硬化引起的管腔壁增厚,从而导致动脉阻塞和触发急性冠脉事件。然而,斑点的随机不确定性限制了对大量回调数据的有效视觉检查,并且临床医生面临的挑战是,他们无法研究与斑块易损性和坏死相关的管腔拓扑结构的细微变化。本文提出了一种基于OCT成像的基于信号的图形表示和随机游动图像分割方法的流明分割方法。图中的边缘权重是通过合并OCT信号衰减物理模型来分配的。沿OCT的每次A扫描跟踪光学反向散射最大值,随后使用全局灰度统计对其进行优化,并用于初始化用于随机行走图像分割的种子。在15和6个拉回中测量了流明与分段的精度,每个回拉均使用150-200帧,使用1)相对于心脏病专家的注释测量的科恩kappa系数和2)用Kullback-Leibler和Bhattacharya度量计算的分段直方图的发散度。较高的分割精度和一致性证实了该方法的特点,即在存在脆弱性提示和坏死池的情况下,能够可靠地在回撤中分割内腔,并且具有确定性的有限时间复杂性。-本文还概述了组织方法和框架的发展分类和分割结合了成像中组织-能量相互作用物理学的线索。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号