首页> 外文期刊>IEEE Transactions on Geoscience and Remote Sensing >Optimal speckle reduction for the product model in multilook polarimetric SAR imagery and the Wishart distribution
【24h】

Optimal speckle reduction for the product model in multilook polarimetric SAR imagery and the Wishart distribution

机译:多视极化SAR图像和Wishart分布中产品模型的最佳散斑减少

获取原文
获取原文并翻译 | 示例

摘要

Several optimal techniques exist to reduce speckle effects on polarimetric data, e.g. the Linear Minimum Mean Square Error (LMMSE) vector filter for multilook detected data or optimum summations such as the Polarimetric Whitening Filter (PWF) for one look complex data. Among other drawbacks, these standard methods do not preserve full polarimetric data, or they do not use the a priori texture distribution, or they are restricted to one look data. In the simplified case of data satisfying the so-called "product model", new optimal techniques are described in this paper that are able to reduce speckle effects on multilook data, while preserving fully polarimetric information and texture variations. This "product model" is valid when the scene texture has a large scale of variation and is polarization independent, for instance in K-distributed clutter. Under this assumption, the measured covariance matrix (multilook data) is the product of a scalar random variable /spl mu/ (the texture) and the covariance matrix C/sub zh/ of an equivalent Gaussian homogeneous surface. C/sub zh/ is the mean covariance matrix and contains the polarimetric information. A PWF for multilook complex data (MPWF) is proposed and is shown to be related to optimal statistical estimators of the texture (Maximum Likelihood, Maximum A Posteriori, MMSE...) when the complex Wishart distribution is used. The ML estimation of C/sub zh/ for textured areas is given and the adaptive filters based on these new tools are described. The results indicate a large speckle reduction. Moreover, the mean values of polarimetric features such as the magnitude and the phase of the HH-VV complex degree of coherence are preserved.
机译:存在几种最佳技术来减少对极化数据的散斑效应,例如。线性最小均方误差(LMMSE)矢量滤波器,用于多视点检测到的数据或最佳求和,例如用于单眼复杂数据的极化白化滤波器(PWF)。除其他缺点外,这些标准方法无法保留完整的极化数据,或者不使用先验纹理分布,或者仅限于单看数据。在简化的数据满足所谓“产品模型”的情况下,本文介绍了新的最佳技术,该技术能够减少多视点数据上的斑点效应,同时保留完全的偏振信息和纹理变化。当场景纹理变化幅度较大且与偏振无关时(例如在K分布的杂波中),此“产品模型”有效。在此假设下,测得的协方差矩阵(多视点数据)是标量随机变量/ spl mu /(纹理)与等效高斯齐次曲面的协方差矩阵C / sub zh /的乘积。 C / sub zh /是平均协方差矩阵,包含极化信息。提出了用于多视图复杂数据的PWF(MPWF),并显示了与使用复杂Wishart分布的纹理的最佳统计估计量(最大似然,最大后验概率,MMSE ...)有关。给出了纹理区域的C / sub zh /的ML估计,并描述了基于这些新工具的自适应滤波器。结果表明大的斑点减少。此外,保留了极化特征的平均值,例如HH-VV复相干度的大小和相位。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号