首页> 外文期刊>IEEE Transactions on Geoscience and Remote Sensing >Parallel implementation of the sparse-matrix/canonical grid method for the analysis of two-dimensional random rough surfaces (three-dimensional scattering problem) on a Beowulf system
【24h】

Parallel implementation of the sparse-matrix/canonical grid method for the analysis of two-dimensional random rough surfaces (three-dimensional scattering problem) on a Beowulf system

机译:稀疏矩阵/规范网格方法的并行实现,用于分析Beowulf系统上的二维随机粗糙表面(三维散射问题)

获取原文
获取原文并翻译 | 示例

摘要

Wave scattering from two-dimensional (2-D) random rough surfaces [three-dimensional (3-D) scattering problem] has been previously analyzed using the sparse-matrix/canonical grid (SM/CG) method. The computational complexity and memory requirement of the SM/CG method are O(N log N) per iteration and O(N), respectively, where N is the number of surface unknowns. Furthermore, the SM/CG method is FFT based, which facilitates the implementation on parallel processors. In this paper, we present a cost-effective solution by implementing the SM/CG method on a Beowulf system consisting of PCs (processors) connected by a 100 Base TX Ethernet switch. The workloads of computing the sparse-matrix-vector multiplication corresponding to the near interactions and the fast Fourier transform (FFT) operations corresponding to the far interactions in the SM/CG method can be easily distributed among all the processors. Both perfectly conducting and lossy dielectric surfaces of Gaussian spectrum and ocean spectrum are analyzed thereafter. When possible, speedup factors against a single processor are given. It is shown that the SM/CG method for a single realization of rough surface scattering can be efficiently adapted for parallel implementation. The largest number of surface unknowns solved in this paper is over 1.5 million. On the other hand, a problem of 131072 surface unknowns for a PEC random rough surface of 1024 square wavelengths only requires a CPU time of less than 20 min. We demonstrate that analysis of a large-scale 2-D random rough surface feasible for a single realization and for one incident angle is possible using the low-cost Beowulf system.
机译:先前已经使用稀疏矩阵/规范网格(SM / CG)方法分析了从二维(2-D)随机粗糙表面进行的波散射[三维(3-D)散射问题]。 SM / CG方法的计算复杂度和内存要求分别为每次迭代O(N log N)和O(N),其中N是表面未知数。此外,SM / CG方法基于FFT,这有助于在并行处理器上实现。在本文中,我们通过在Beowulf系统上实施SM / CG方法来提供一种经济高效的解决方案,该系统由通过100 Base TX以太网交换机连接的PC(处理器)组成。可以很容易地在所有处理器之间分配计算对应于SM / CG方法中近距离交互作用的稀疏矩阵矢量乘法和对应于远距离交互作用的快速傅立叶变换(FFT)操作的工作量。此后,分析高斯光谱和海洋光谱的完美导电和有损耗的介电表面。如果可能,给出针对单个处理器的加速因子。结果表明,单次实现粗糙表面散射的SM / CG方法可以有效地适用于并行实现。本文解决的表面未知数最多,超过150万。另一方面,对于1024平方波长的PEC随机粗糙表面而言,131072表面未知数的问题仅需要少于20分钟的CPU时间。我们证明,使用低成本Beowulf系统可以对单个实现和一个入射角进行大规模二维随机粗糙表面分析。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号