首页> 外文期刊>IEEE Transactions on Geoscience and Remote Sensing. >A model-based mixture-supervised classification approach in hyperspectral data analysis
【24h】

A model-based mixture-supervised classification approach in hyperspectral data analysis

机译:高光谱数据分析中基于模型的混合监督分类方法

获取原文
获取原文并翻译 | 示例

摘要

It is well known that there is a strong relation between class definition precision and classification accuracy in pattern classification applications. In hyperspectral data analysis, usually classes of interest contain one or more components and may not be well represented by a single Gaussian density function. In this paper, a model-based mixture classifier, which uses mixture models to characterize class densities, is discussed. However, a key outstanding problem of this approach is how to choose the number of components and determine their parameters for such models in practice, and to do so in the face of limited training sets where estimation error becomes a significant factor. The proposed classifier estimates the number of subclasses and class statistics simultaneously by choosing the best model. The structure of class covariances is also addressed through a model-based covariance estimation technique introduced in this paper.
机译:众所周知,在模式分类应用中,类别定义精度和分类精度之间存在很强的关系。在高光谱数据分析中,通常感兴趣的类别包含一个或多个组件,并且可能无法通过单个高斯密度函数很好地表示。在本文中,讨论了基于模型的混合物分类器,该模型使用混合物模型来表征类密度。但是,这种方法的一个主要突出问题是在实践中如何选择组件的数量并确定此类模型的参数,以及如何面对有限的训练集(估计误差成为重要因素)来做到这一点。拟议的分类器通过选择最佳模型来同时估算子类和类统计的数量。类协方差的结构也通过本文介绍的基于模型的协方差估计技术解决。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号