首页> 外文期刊>IEEE Transactions on Geoscience and Remote Sensing. >Competitive neural-net-based system for the automatic detection of oceanic mesoscalar structures on AVHRR scenes
【24h】

Competitive neural-net-based system for the automatic detection of oceanic mesoscalar structures on AVHRR scenes

机译:基于竞争神经网络的AVHRR场景中海洋中标量结构自动检测系统

获取原文
获取原文并翻译 | 示例

摘要

This paper shows a prototype automatic interpretation system for Advanced Very High Resolution Radiometer satellite ocean images. It is built on a three-level knowledge model (pixel, regional, and domain semantic problem levels) and uses several connectionist computational approaches. First, artificial neural net models (to the pixel level) were used for basic preprocessing tasks such as cloud masking. Next, a new connectionist technique using input vectors with nonnumerical regional marine features has also been developed and used in the identification phase. The paper shows some results of oceanic structure identification tasks (wakes, upwellings, and eddies) in infrared images of the northwest African coast and the Canary Islands. These results illustrate a procedure for improving automatic oceanic interpretation of satellite images.
机译:本文显示了用于超高分辨率高分辨率辐射计卫星海洋图像的原型自动解释系统。它建立在三级知识模型(像素,区域和域语义问题级别)的基础上,并使用了几种连接主义的计算方法。首先,将人工神经网络模型(以像素为单位)用于基本的预处理任务,例如云遮罩。接下来,还开发了一种使用具有非数值区域海洋特征的输入向量的新连接技术,并将其用于识别阶段。本文在西北非洲海岸和加那利群岛的红外图像中显示了海洋结构识别任务(苏醒,上升流和涡流)的一些结果。这些结果说明了改善卫星图像自动海洋解释的程序。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号