首页> 外文期刊>IEEE Transactions on Geoscience and Remote Sensing >On neural network algorithms for retrieving forest biomass from SAR data
【24h】

On neural network algorithms for retrieving forest biomass from SAR data

机译:从SAR数据中检索森林生物量的神经网络算法

获取原文
获取原文并翻译 | 示例

摘要

We discuss the application of neural network algorithms (NNAs) for retrieving forest biomass from multifrequency (L- and P-band) multipolarization (hh, vv, and vv) backscattering. After discussing the training and pruning procedures, we examine the performances of neural algorithms in inverting combinations of radar backscattering coefficients at different frequencies and polarization states. The analysis includes an evaluation of the expected sensitivity of the algorithm to measurement noise stemming both from speckle and from fluctuations of vegetation and soil parameters. The NNA accomplishments are compared with those of linear regressions for the same channel combinations. The application of NNAs to invert actual multifrequency multipolarization measurements reported in literature is then considered. The NNA retrieval accuracy is now compared with those yielded by linear and nonlinear regressions and by a model-based technique. A direct analysis of the information content of the radar measurements is finally carried out through an extended pruning procedure of the net.
机译:我们讨论了神经网络算法(NNA)在多频(L波段和P波段)多极化(hh,vv和vv)反向散射中检索森林生物量的应用。在讨论了训练和修剪程序之后,我们研究了神经算法在不同频率和极化状态下雷达反向散射系数的组合反演方面的性能。分析包括对算法对测量噪声的预期灵敏度的评估,该噪声源自散斑以及植被和土壤参数的波动。对于相同的渠道组合,将NNA的成就与线性回归的成就进行比较。然后考虑使用NNA来反转文献中报道的实际多频多极化测量结果。现在将NNA的检索精度与通过线性和非线性回归以及基于模型的技术得出的NNA检索精度进行比较。最后,通过扩展的网络修剪程序对雷达测量的信息内容进行直接分析。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号