首页> 外文期刊>IEEE Transactions on Geoscience and Remote Sensing. >Initial Results of the Geostationary Synthetic Thinned Array Radiometer (GeoSTAR) Demonstrator Instrument
【24h】

Initial Results of the Geostationary Synthetic Thinned Array Radiometer (GeoSTAR) Demonstrator Instrument

机译:对地静止合成稀疏阵列辐射计(GeoSTAR)演示仪的初步结果

获取原文
获取原文并翻译 | 示例

摘要

The design, error budget, and preliminary test results of a 50–56-GHz synthetic aperture radiometer demonstration system are presented. The instrument consists of a fixed 24-element array of correlation interferometers and is capable of producing calibrated images with 1 $^{circ}$ spatial resolution within a 17 $^{circ}$ wide field of view. This system has been built to demonstrate a performance and a design which can be scaled to a much larger geostationary Earth imager. As a baseline, such a system would consist of about 300 elements and would be capable of providing contiguous full hemispheric images of the Earth with 1 K of radiometric precision and 50-km spatial resolution. An error budget is developed around this goal and then tested with the demonstrator system. Errors are categorized as either scaling (i.e., complex gain) or additive (noise and bias) errors. Sensitivity to gain and/or phase error is generally proportional to the magnitude of the expected visibility, which is high only in the shortest baselines of the array, based on model simulations of the Earth as viewed from geostationary Earth orbit. Requirements range from approximately 0.5% and 0.3$^{circ}$ of amplitude and phase uncertainty, respectively, for the closest spacings at the center of the array, to about 4% and 2.5 $^{circ}$ for the majority of the array. The latter requirements are demonstrated with our instrument using relatively simple references and antenna models, and by relying on the intrinsic stability and efficiency of the system. The 0.5% requirement (for the short baselines) is met by measuring the detailed spatial response (e.g., on the antenna range) and by using an internal noise diode reference to stabilize the response. This result suggests a hybrid imag-e synthesis algorithm in which long baselines are processed by a fast Fourier transform and the short baselines are processed by a more precise (G-matrix) algorithm which can handle small anomalies among antenna and receiver responses. Visibility biases and other additive errors must be below about 1.5 mK on average, regardless of baseline. The bias requirement is largely met with a phase-shifting scheme applied to the local oscillator distribution of our demonstration system. Low mutual coupling among the horn antennas of our design is also critical to minimize the biases caused by crosstalk of receiver noise. Performance is validated by a three-way comparison between interference fringes measured on the antenna range, solar transit observations, and the system model.
机译:介绍了50-56 GHz合成孔径辐射计演示系统的设计,误差预算和初步测试结果。该仪器由固定的24元素相关干涉仪阵列组成,能够在17 $宽视场内产生1 producing空间分辨率的校准图像。构建该系统的目的是演示其性能和设计,并将其缩放到更大的地球静止地球成像仪。作为一个基准,这样的系统将由大约300个元素组成,并且能够以1 K的辐射精度和50 km的空间分辨率提供连续的完整的地球半球图像。围绕该目标制定了错误预算,然后使用演示系统进行了测试。误差分为缩放误差(即复增益)或加性误差(噪声和偏差)。根据从地球静止轨道观察到的地球模型,对增益和/或相位误差的灵敏度通常与预期可见度的大小成比例,该可见度的大小仅在阵列的最短基线中才高。要求的范围分别是:对于阵列中心最近的间距,幅度和相位不确定性分别约为0.5%和0.3%,而对于大多数阵列,其要求约为4%和2.5%。数组。我们的仪器使用相对简单的参考和天线模型,并依靠系统的固有稳定性和效率,证明了后者的要求。通过测量详细的空间响应(例如在天线范围内)并使用内部噪声二极管基准来稳定响应,可以满足0.5%的要求(针对短基线)。该结果表明了一种混合的imag-e合成算法,其中长基线由快速傅立叶变换处理,而短基线由更精确的(G-矩阵)算法处理,该算法可以处理天线和接收器响应之间的微小异常。无论基线如何,可见度偏差和其他附加误差平均必须低于1.5 mK。通过将相移方案应用于演示系统的本地振荡器分布,可以基本满足偏置要求。我们设计的号角天线之间的低互耦性对于最小化由接收器噪声的串扰引起的偏置也至关重要。通过在天线范围内测量的干扰条纹,太阳过境观测值和系统模型之间的三向比较来验证性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号