首页> 外文期刊>IEEE Transactions on Geoscience and Remote Sensing >Particle Filtering Based Approach for Landmine Detection Using Ground Penetrating Radar
【24h】

Particle Filtering Based Approach for Landmine Detection Using Ground Penetrating Radar

机译:基于粒子滤波的探地雷达探测地雷的方法

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we present an online stochastic approach for landmine detection based on ground penetrating radar (GPR) signals using sequential Monte Carlo (SMC) methods. The processing applies to the two-dimensional B-scans or radargrams of 3-D GPR data measurements. The proposed state-space model is essentially derived from that of Zoubir , which relies on the Kalman filtering approach and a test statistic for landmine detection. In this paper, we propose the use of reversible jump Markov chain Monte Carlo in association with the SMC methods to enhance the efficiency and robustness of landmine detection. The proposed method, while exploring all possible model spaces, only expends expensive computations on those spaces that are more relevant. Computer simulations on real GPR measurements demonstrate the superior performance of the SMC method with our modified model. The proposed algorithm also considerably outperforms the Kalman filtering approach, and it is less sensitive to the common parameters used in both methods, as well as those specific to it.
机译:在本文中,我们介绍了一种基于随机探地雷达(GPR)信号的在线随机探雷方法,该方法采用顺序蒙特卡洛(SMC)方法。该处理适用于3-D GPR数据测量的二维B扫描或雷达图。所提出的状态空间模型基本上是从Zoubir模型推导而来的,该模型依赖于Kalman滤波方法和地雷探测的测试统计量。在本文中,我们提出结合SMC方法使用可逆跳跃马尔可夫链蒙特卡罗和SMC方法,以提高地雷探测的效率和鲁棒性。在探索所有可能的模型空间时,所提出的方法仅在那些更相关的空间上花费了昂贵的计算。实际GPR测量值的计算机模拟表明,我们的改进模型具有SMC方法的优越性能。所提出的算法也大大优于Kalman滤波方法,并且对两种方法中使用的通用参数以及特定于该方法的参数不太敏感。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号