首页> 外文期刊>IEEE Transactions on Geoscience and Remote Sensing. >Retrieval of Atmospheric Integrated Water Vapor and Cloud Liquid Water Content Over the Ocean From Satellite Data Using the 1-D-Var Ice Cloud Microphysics Data Assimilation System (IMDAS)
【24h】

Retrieval of Atmospheric Integrated Water Vapor and Cloud Liquid Water Content Over the Ocean From Satellite Data Using the 1-D-Var Ice Cloud Microphysics Data Assimilation System (IMDAS)

机译:使用1-D-Var冰云微物理数据同化系统(IMDAS)从卫星数据中检索海洋中大气总水蒸气和云液态水含量

获取原文
获取原文并翻译 | 示例

摘要

Reliable prediction of precipitation by numerical weather prediction (NWP) models depends on the appropriate representation of cloud microphysical processes and accurate initial conditions of observations of atmospheric variables. Therefore, to retrieve reasonable cloud distributions, a 1-D variational Ice Cloud Microphysics Data Assimilation System (IMDAS) is developed to improve the predictability of NWP models. The general framework of IMDAS includes the Lin ice cloud microphysics scheme as a model operator, a four-stream fast microwave radiative transfer model in the atmosphere as an observation operator, and a global minimization method that is known as the shuffled complex evolution. IMDAS assimilates the satellite microwave radiometer data set of the Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E) and retrieves integrated water vapor and integrated cloud liquid water content. This new method successfully introduces heterogeneity into the initial state of the atmosphere, and the modeled microwave brightness temperatures agree well with the observations of the Wakasa Bay Experiment 2003 in Japan. It has significantly improved the performance of the cloud microphysics scheme by the intrusion of heterogeneity into the external global reanalysis data, which resultantly improved atmospheric initial conditions.
机译:通过数值天气预报(NWP)模型对降水进行可靠的预测取决于云微物理过程的适当表示以及大气变量观测的准确初始条件。因此,为了检索合理的云分布,开发了一维变分冰云微物理数据同化系统(IMDAS)以提高NWP模型的可预测性。 IMDAS的总体框架包括作为模型算子的林冰云微物理学方案,作为观测算子的大气中四流快速微波辐射传递模型以及被称为随机复变的全局最小化方法。 IMDAS结合了用于地球观测系统的高级微波扫描辐射仪(AMSR-E)的卫星微波辐射仪数据集,并检索了集成的水蒸气和集成的云状液态水含量。这种新方法成功地将异质性引入了大气的初始状态,并且模拟的微波亮度温度与日本Wakasa湾实验2003的观测结果非常吻合。通过将异质性入侵到外部全局再分析数据中,它显着提高了云微物理方案的性能,从而改善了大气初始条件。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号