首页> 外文期刊>Geoscience and Remote Sensing, IEEE Transactions on >MAP Estimation for Multiresolution Fusion in Remotely Sensed Images Using an IGMRF Prior Model
【24h】

MAP Estimation for Multiresolution Fusion in Remotely Sensed Images Using an IGMRF Prior Model

机译:使用IGMRF先验模型进行遥感图像中多分辨率融合的MAP估计

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we propose a model-based approach for the multiresolution fusion of satellite images. Given the high-spatial-resolution panchromatic (Pan) image and the low-spatial- and high-spectral-resolution multispectral (MS) image acquired over the same geographical area, the problem is to generate a high-spatial- and high-spectral-resolution MS image. This is clearly an ill-posed problem, and hence, we need a proper regularization. We model each of the low-spatial-resolution MS images as the aliased and noisy version of their corresponding high spatial resolution, i.e., fused (to be estimated) MS images. A proper aliasing matrix is assumed to take care of the undersampling process. The high-spatial-resolution MS images to be estimated are then modeled as separate inhomogeneous Gaussian Markov random fields (IGMRF), and a maximum a posteriori (MAP) estimation is used to obtain the fused image for each of the MS bands. The IGMRF parameters are estimated from the available high-resolution Pan image and are used in the prior model for regularization purposes. Since the method does not directly operate on Pan pixel values as most of the other methods do, spectral distortion is minimum, and the spatial properties are better preserved in the fused image as the IGMRF parameters are learned at every pixel. We demonstrate the effectiveness of our approach over some existing methods by conducting experiments on synthetic data, as well as on the images captured by the QuickBird satellite.
机译:在本文中,我们提出了一种基于模型的卫星图像多分辨率融合方法。给定在同一地理区域上获取的高空间分辨率全色(Pan)图像以及低空间和高光谱分辨率多光谱(MS)图像,问题在于生成高空间和高光谱分辨率的MS图像。这显然是一个不适的问题,因此,我们需要适当的正规化。我们将每个低空间分辨率的MS图像建模为其对应的高空间分辨率的别名和嘈杂版本,即融合(待估计)的MS图像。假定使用适当的混叠矩阵来处理欠采样过程。然后将要估计的高空间分辨率MS图像建模为单独的非均匀高斯马尔可夫随机场(IGMRF),并且使用最大后验(MAP)估计来获得每个MS波段的融合图像。 IGMRF参数是从可用的高分辨率Pan图像估计的,并在现有模型中用于正则化目的。由于该方法不像大多数其他方法那样直接对Pan像素值进行运算,因此光谱失真最小,并且随着在每个像素处学习IGMRF参数,可以更好地在融合图像中保留空间属性。通过对合成数据以及QuickBird卫星捕获的图像进行实验,我们证明了该方法相对于某些现有方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号