首页> 外文期刊>Geoscience and Remote Sensing, IEEE Transactions on >A Hybrid Automatic Endmember Extraction Algorithm Based on a Local Window
【24h】

A Hybrid Automatic Endmember Extraction Algorithm Based on a Local Window

机译:基于局部窗口的混合端元自动提取算法

获取原文
获取原文并翻译 | 示例

摘要

Anomaly endmembers play an important role in the application of remote sensing, such as in unmixing classification and target detection. Inspired by the iterative error analysis (IEA), a hybrid endmember extraction algorithm (HEEA) based on a local window is proposed in this paper, which focuses on improving the accuracy of endmember extraction. HEEA uses the spectral-information-divergence–spectral-angle-distance metric to measure the similarity and the orthogonal subspace projection (OSP) method to search for the endmembers, which can decrease the correlation between extracted endmember spectra. Moreover, it is based on a local window which integrates both spatial and spectral aspects to extract endmembers. A synthetic image and Airborne Visible/Infrared Imaging Spectrometer data were tested with the HEEA method, classical IEA, OSP, simplex growing algorithm, sequential maximum angle convex cone, and spectral spatial endmember extraction automatic endmember extraction method. Experimental results indicated that HEEA manifested a slightly better improvement in the rmse and spectrum information than the other methods. The effect was investigated with various SNRs and different window sizes. The robustness of HEEA is better than the classical IEA, even with lower SNR.
机译:异常末端成员在遥感的应用中(例如在分解分类和目标检测中)起着重要作用。在迭代误差分析(IEA)的启发下,提出了一种基于局部窗口的混合端元提取算法(HEEA),着重提高端元提取的准确性。 HEEA使用光谱信息差异-光谱角度距离度量标准来测量相似性,并使用正交子空间投影(OSP)方法来搜索末端成员,这可以降低提取的末端成员光谱之间的相关性。而且,它基于一个局部窗口,该窗口集成了空间和光谱方面以提取端成员。使用HEEA方法,经典IEA,OSP,单纯形增长算法,连续最大角度凸锥和光谱空间端成员提取自动端成员提取方法测试了合成图像和机载可见/红外成像光谱仪数据。实验结果表明,与其他方法相比,HEEA在均方根和频谱信息方面显示出稍好的改善。使用各种SNR和不同的窗口大小来研究效果。即使具有较低的SNR,HEEA的鲁棒性也优于传统的IEA。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号