首页> 外文期刊>Remote Sensing >An Endmember Extraction Method Based on Artificial Bee Colony Algorithms for Hyperspectral Remote Sensing Images
【24h】

An Endmember Extraction Method Based on Artificial Bee Colony Algorithms for Hyperspectral Remote Sensing Images

机译:基于人工蜂群算法的高光谱遥感影像末端成员提取方法

获取原文

摘要

Mixed pixels are common in hyperspectral remote sensing images. Endmember extraction is a key step in spectral unmixing. The linear spectral mixture model (LSMM) constitutes a geometric approach that is commonly used for this purpose. This paper introduces the use of artificial bee colony (ABC) algorithms for spectral unmixing. First, the objective function of the external minimum volume model is improved to enhance the robustness of the results, and then, the ABC-based endmember extraction process is presented. Depending on the characteristics of the objective function, two algorithms, Artificial Bee Colony Endmember Extraction-RMSE (ABCEE-R) and ABCEE-Volume (ABCEE-V) are proposed. Finally, two sets of experiment using synthetic data and one set of experiments using a real hyperspectral image are reported. Comparative experiments reveal that ABCEE-R and ABCEE-V can achieve better endmember extraction results than other algorithms when processing data with a low signal-to-noise ratio (SNR). ABCEE-R does not require high accuracy in the number of endmembers, and it can always obtain the result with the best root mean square error (RMSE); when the number of endmembers extracted and the true number of endmembers does not match, the RMSE of the ABCEE-V results is usually not as good as that of ABCEE-R, but the endmembers extracted using the former algorithm are closer to the true endmembers.
机译:混合像素在高光谱遥感图像中很常见。端基提取是光谱解混的关键步骤。线性光谱混合模型(LSMM)构成了通常用于此目的的几何方法。本文介绍了使用人工蜂群(ABC)算法进行光谱分解的方法。首先,改进了外部最小体积模型的目标函数,以增强结果的鲁棒性,然后提出了基于ABC的端成员提取过程。根据目标函数的特点,提出了两种算法:人工蜂群末端成员提取-RMSE(ABCEE-R)和ABCEE-Volume(ABCEE-V)。最后,报告了两组使用合成数据的实验和一组使用真实高光谱图像的实验。比较实验表明,当处理具有低信噪比(SNR)的数据时,ABCEE-R和ABCEE-V可以比其他算法获得更好的端成员提取结果。 ABCEE-R不需要很高的端基数量,并且始终可以获得具有最佳均方根误差(RMSE)的结果;当提取的最终成员数与实际的最终成员数不匹配时,ABCEE-V结果的RMSE通常不如ABCEE-R的RMSE好,但使用前一种算法提取的最终成员则更接近真实的最终成员。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号